
การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

*Corresponding Author

Energy-Aware Navigation for Unmanned Ground Vehicles: A Dijkstra-Based Approach on

Raspberry Pi 5

Rahut Puttharaksa1, Nattavit Piamvilai1*,Suriyotai Supanyapong1,

Prem Tooboonlong1, and Polatip Thongpet1

1*Department of Electrical Engineering Technology, College of Industrial Technology,

King Mongkut's University of Technology North Bangkok,

E-mail: nattavit.p@cit.kmutnb.ac.th*

Abstract
This paper presents an Energy-aware Navigation

system designed for embedded platforms using Dijkstra’s

algorithm implemented on a Raspberry Pi 5. The system

combines real-time GPS input, OpenStreetMap-based

mapping, and battery State of Charge (SoC) monitoring to

compute energy-efficient paths while minimising total

Energy Consumption. When energy is insufficient to

reach the destination, the system reroutes through the

nearest charging station. All Route Planning

computations are performed locally on the Raspberry Pi

5, with lightweight processing requirements suitable for

real-time use on low-cost hardware. The system enables

intelligent navigation decisions based on power

availability by embedding energy constraints directly into

the routing process. This approach highlights the potential

of compact, flexible embedded systems to support

adaptive path planning in energy-limited environments.

Furthermore, the system provides a modular foundation

for future expansion, including integrating advanced

sensors, energy modeling enhancements, and context-

aware routing strategies for mobile platforms.

Keywords: Dijkstra’s algorithm, Energy Consumption,

Energy-aware Navigation, GPS, Raspberry Pi 5, Route

Planning

1. Introduction

With the rise of vehicle technologies, modern

navigation systems increasingly rely on GPS, digital

maps, and shortest-path algorithms to improve

transportation efficiency. These systems aim to minimise

travel distance, time, and energy usage. Integrating route

planning with real-time energy data is essential for

energy-aware decision-making as energy becomes a

critical concern, especially for electric vehicles.

A simulation system was developed using a custom

vehicle model with Raspberry Pi 5 as the core processor

to address this. The system begins with a web interface

where users select a destination, while the starting point is

obtained via GPS. Battery SoC is detected through

onboard sensors. This data is sent to the Pi, which uses the

OSMnx library to convert OSM data into a weighted

graph locally [1]. Dijkstra’s algorithm is then applied to

compute the shortest, most energy-efficient path.

If the estimated energy is insufficient, the system

reroutes to the nearest charging station. The route is

displayed via an interactive map, allowing users to view

energy metrics and path details through a browser or

onboard screen.

Simulations confirm that the system computes

energy-aware routes and adapts to battery status, two test

cases were examined one with sufficient energy, and one

without. In both, predicted energy use matched actual

values. The system also achieved consistently low

computation times, confirming its capability for real-time

operation on embedded hardware.

2. Methodology

2.1 Overview of the Energy-Aware Navigation

System Using Dijkstra's Algorithm
This navigation system is built upon Dijkstra's

algorithm, which computes the shortest and most energy-

efficient path within a graph-based road network. The

system comprises five core components: a web-based user

interface, Raspberry Pi 5 as the onboard processor, a

vehicle equipped with a GPS module, a central server for

data management, and OSM data. as shown in Fig. 1.

illustrates the overall architecture and the interaction

between these components, showing how each part

collaborates to enable real-time, energy-aware navigation

with minimal hardware resources.

Firstly, the user selects a destination through the

interface, while the Raspberry Pi 5 retrieves the vehicle's

current location in real time using GPS data. The OSM

data is pre-processed via the OSMnx library and stored

locally on the Raspberry Pi as a weighted graph, where

nodes and edges represent intersections and road

segments with associated distance and energy cost

attributes.

When a route request is triggered, the Raspberry Pi

loads the graph and executes Dijkstra's algorithm to

compute the optimal path by minimising cumulative

costs, such as travel distance or estimated energy usage.

The system then calculates the total trip energy

consumption and compares it to the remaining battery

capacity. If the available energy is insufficient, it

dynamically reroutes through the nearest charging station

to ensure the trip's completion.

Real-time GPS updates and SoC monitoring enable

the system to adapt to changing travel and battery

conditions. This ensures continuous, efficient, and

energy-aware pathfinding throughout the journey, even

under constrained power availability.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig. 1. Overview of the proposed energy-aware navigation system architecture based on real-time GPS and

Dijkstra’s algorithm

2.2 Pathfinding Process Using Dijkstra’s

Algorithm
The core of the navigation system's pathfinding logic

is Dijkstra's Algorithm, a foundational and highly

efficient method for determining the shortest path

between two nodes in a weighted graph. The algorithm

systematically explores the graph, guaranteeing the

discovery of the most optimal route based on cumulative

distance.

The operational flow of The algorithm is

demonstrated in the visualisation provided as shown in

Fig. 2. In this specific example, the process begins at the

designated start node (A) and is set to find the shortest

path to the destination node (F).

Fig. 2. Visualisation of the Dijkstra's algorithm in progress, showing

visited nodes and the current path exploration from Start Node A to

Destination Node F

Dijkstra’s Algorithm is a well-established graph

traversal method used to determine the shortest path

between two nodes in a weighted graph. The process

begins with the initialisation step, where the source node

is assigned a distance of zero. In contrast, all other nodes

are given an initial value of infinity to signify that they are

unreachable at the start. These nodes are then placed into

a priority queue that helps maintain the order based on the

smallest known distance.

The Algorithm then proceeds into its iterative

exploration phase. In each iteration, it extracts the

unvisited node with the minimum known distance,

marking it as the currently processing node. Once a node

is processed—meaning all of its neighbors have been

examined-it is marked as visited, signifying that the

shortest path to that node has been finalised.

The core mechanism of the Algorithm lies in the edge

relaxation step. For each neighbor of the current node, the

Algorithm calculates the potential new distance by

summing the current node’s distance with the weight of

the connecting edge. If this new value is smaller than the

previously recorded distance for that neighbor, it is

updated accordingly as shown in Eq. (1)

() () ()

() () ()

If ,

: ,

d u w u v d v

d v d u w u v

+ 

 = +
 (1)

where

()d u = Current known shortest distance from the

source to node u

(,)w u v = Weight between node u and node v

()d v = Current known distance to node v

This process continues until the destination node is

reached. At that point, the algorithm terminates and

reconstructs the path by backtracking from the destination

to the source, identifying the optimal route. This behavior

is illustrated as shown in Fig. 2, where node A is the

starting point and the shortest path is visually traced to the

destination. The dashed line represents the finalized route.

Driven by a greedy strategy, Dijkstra’s algorithm

consistently prioritizes the most efficient paths, offering a

reliable and computationally effective solution for route

planning in vehicular navigation system.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig. 3. System flowchart illustrating the process from initialisation to energy-aware routing, charging, and real-time navigation decisions.

2.3 System Flowchart of Dijkstra-Based Routing

with Energy-Aware Logic

Figure. 3. shows the flowchart detailing the overall

operational logic of the energy-aware route planning

system implemented on Raspberry Pi 5, from initialisation

to route execution and dynamic rerouting.

The proposed energy-aware navigation system's

operation begins with the Initialisation Phase, in which a

pre-processed road graph—generated from OSM data

using the OSMnx library—is retrieved from local storage

on the Raspberry Pi. Concurrently, the system acquires

the vehicle's current SoC and GPS coordinates to establish

the initial conditions.

Following this, the system proceeds to the Trip

Planning stage, which displays the vehicle's current

location and battery level to the user. The user then selects

a desired destination through a graphical interface.

Once the destination is set, the system enters the path

Calculation phase. Here, Dijkstra's algorithm is employed

to compute the shortest path from the current location to

the selected destination based on the locally stored

weighted road graph, as described as shown in Eq. (1).

Additionally, the system estimates the total energy

required for the trip using a predefined energy

consumption rate derived from experimental data, as

shown in Eq. (2).

This value is then compared with the current battery

capacity. If the available energy is insufficient, the system

initiates the rerouting Logic, where the user is prompted

to confirm whether to redirect through the nearest

charging station or proceed with the current route under

energy risk.

Upon arrival at a charging station, the system

requests the expected charging duration and updates the

SoC accordingly. After charging, the system re-evaluates

energy sufficiency and either resumes the original trip or

loops back to recalculate a new route.

trip rateE e d=  (2)

where

tripE = Total energy required for the trip

ratee = Specific energy consumption rate per distance

d = Planned travel distance

Subsequently, the energy sufficiency check is

performed by comparing the estimated energy demand

with the available battery level. If sufficient energy is

available, the system proceeds directly to the trip.

However, if the battery is deemed insufficient, the system

prompts the user with the option to reroute.

If the user accepts, the system locates the nearest

charging station and updates the route accordingly;

otherwise, it continues with the original high-risk path.

Once routing is confirmed, the trip execution phase

begins, involving real-time tracking of the vehicle’s

position and energy consumption, while simultaneously

displaying the planned route via an interactive web-based

map. If the updated path includes a charging station, the

charging station handling process is activated upon

arrival. After charging, the system enters the post-

charging or trip completion phase to reassess the battery

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

status. If the updated SoC remains insufficient to reach the

destination, the system halts and prompts the user to

initiate a new route.

If accepted, the process loops back to the trip

planning phase; the session is terminated if declined.

3. Implementation

3.1 Experimental Platform
To evaluate the performance of the proposed energy-

aware navigation system, a ground-based wheeled drone

was developed and employed as a platform for field

testing, as shown in Fig. 4.

Fig. 4. Ground-based wheeled drone used to record energy

consumption during route execution.

The objective of the test was to evaluate the system's

ability to monitor and estimate energy consumption

during actual route execution in a real-world environment.

 To simulate realistic travel conditions, a ground-

based wheeled drone was used to traverse the computed

path generated by the navigation system physically. The

test aimed to reflect consistent movement behavior

similar to practical deployments. Throughout the

experiment, the vehicle followed the planned route

without manual intervention.

The system continuously tracked battery voltage and

usage in real time, allowing for precise measurement of

energy consumed during each trip. This empirical data

provided a reliable basis for validating the energy

estimation model integrated within the route planning

algorithm. Moreover, conducting the test under controlled

yet repeatable conditions ensured consistency across

multiple runs, making it suitable for performance

benchmarking. The resulting energy profiles contributed

directly to assessing the algorithm's energy efficiency.

Fig. 5. shows the battery voltage monitoring circuit,

which illustrates the electrical schematic used to monitor

the battery voltage in real time. This hardware component

was critical in ensuring accurate SoC readings and

supporting the system's energy-aware decision-making

process.

Fig. 5. Circuit diagram for battery voltage and GPS data

acquisition using a voltage divider and ADS1115 connected to

Raspberry Pi 5.

The system uses a 12V, 15,000 mAh lithium-ion

battery connected to a resistive voltage divider circuit that

scales the voltage down to approximately 3V—within a

safe range for analogue input. The scaled voltage is fed

into an ADS1115 Analog-to-Digital Converter (ADC), a

high-resolution 16-bit device communicating with the

Raspberry Pi 5 via the I2C protocol. This setup enables

accurate and continuous battery voltage monitoring under

varying load conditions.

The updated circuit diagram Fig. 5. combines voltage

sensing and GPS acquisition into a unified hardware

layout. The voltage divider reduces the 12V battery output

to a safe level for the ADC input, and the ADS1115

digitizes the voltage for real-time processing by the

Raspberry Pi. A GPS module is also integrated into the

circuit, powered by the same 12V source and connected

to the Raspberry Pi 5 through a dedicated communication

line (e.g., UART). the GPS module provides real-time

location data, essential for dynamic route planning and

distance estimation.

This configuration ensures electrical safety and

seamless location and energy data integration, enabling

the system to make informed decisions. The measured

battery voltage is converted to SoC using a predefined

voltage-to-SoC mapping. This SoC value and GPS

coordinates form the core input for the energy-aware

routing algorithm. If the energy is insufficient to complete

the planned trip, the system initiates rerouting to the

nearest charging station, Including the GPS module

enhances the system's ability to provide location-aware,

energy-efficient navigation under real-world conditions.

4. Results and Discussion
This section presents the experimental results

obtained from the developed vehicle platform. We first

validate the performance of the real-time battery

monitoring system and then analyze the vehicle's energy

consumption characteristics. Finally, we discuss the

implications of these findings for the primary goal of this

work, enabling energy-aware pathfinding.

4.1 Discussion and Implications for Energy-

Aware Pathfinding
Integrating the validated battery voltage sensing

circuit with the empirically measured energy consumption

profile establishes a robust and practical platform for

developing and evaluating energy-aware navigation

algorithms. The proposed system highlights a closed-loop

relationship between real-time energy monitoring and

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

dynamic route planning, forming this research's core

focus.

All computations, including graph processing, energy

estimation, and pathfinding via Dijkstra's algorithm, are

performed locally on a Raspberry Pi 5. This local

processing approach reduces system latency, eliminates

dependence on cloud computation, and ensures suitability

for real-time operation in embedded environments.

Two test scenarios were designed under controlled

conditions to assess system performance. In the first

scenario as shown in Fig. 6, the vehicle traveled from the

campus main gate to a predefined building. While the

vehicle reached the destination, the battery's SoC dropped

to triggering a low battery warning. This emphasizes the

need for accurate energy prediction to ensure route

feasibility. The system recorded a specific energy

consumption rate of 3.45 Wh/km, a benchmark for

estimating energy requirements in subsequent routes.

Fig. 6. Route followed without rerouting. The vehicle arrives with

a critical battery level (5.78%), triggering a low battery warning.

Fig. 7. Energy-aware rerouting to the nearest charging station due

to insufficient battery for the original route.

In the second scenario Fig. 7, the system identified

that the remaining energy was insufficient for the original

route. As a result, the rerouting logic was triggered,

redirecting the vehicle to the nearest charging station, the

vehicle completed the revised route with only SoC

remaining and initiated a charging procedure.

Based on real-time SoC feedback, this proactive

adjustment validates the system's ability to make

intelligent, energy-aware decisions and adaptively

maintain safe navigation even under constrained energy

conditions.

4.2 Computational Demands of Dijkstra

Route Planning
To comprehensively evaluate the operational

performance of electric vehicles, it is essential to assess

energy consumption and computational processing time.

While battery capacity and range are critical indicators of

system longevity, the efficiency of the power system—

especially during real-time operations—directly affects

practical usability and sustainability. Simultaneously,

computational demands from onboard systems,

particularly for dynamic route planning, significantly

influence responsiveness, processing overhead, and

overall energy utilisation. This study investigates these

two interconnected aspects by rigorously quantifying

energy consumption and analyzing processing time under

distinct routing scenarios. The goal is to understand how

energy and processing constraints affect navigation

performance and decision-making on embedded

platforms.

An experimental evaluation was conducted using a

10 kg ground-based vehicle powered by an 11.1 V, 15 Ah

lithium-ion (Li-ion) battery. During testing, the vehicle

maintained a constant speed of 30 km/h for 30 minutes,

covering 15 kilometers. Throughout the experiment, the

system drew an average current of 9.33 A, leading to an

average power consumption of 103.56 W. The total

energy consumed was 51.78 Wh, with a corresponding

battery drain rate of 155.5 mAh/min. To enable consistent

comparisons across use cases, this value was normalized

to a specific energy consumption rate of 3.45 Wh/km,

which serves as a benchmark for evaluating the energy

cost of travel in various path scenarios.

Table 1 summarizes the processing time for the

standard route scenario. Across five test cycles, distances

ranged from 0.81614 km to 1.07014 km, with processing

times between 0.29 ms and 0.62 ms. The average

processing time was 0.446 ms, and the average processing

time per kilometer was calculated as 0.499 ms/km.

Table 2 shows the rerouting scenario, where distances

ranged from 0.04452 km to 0.20372 km. Processing times

ranged from 0.34 ms to 0.73 ms, with an average of 0.414

ms. The average processing time per kilometer slightly

increased to 0.503 ms/km.

While the raw average processing time remained

similar across both scenarios, a deeper comparison of

processing time per meter reveals a significant disparity.

The system used only 0.000499 ms/m for standard

routing, while energy-constrained rerouting required

0.00503 ms/m—a computational cost approximately 10

times higher per meter. This highlights the added

complexity of decision-making under battery constraints.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Table 1. Computation time of Dijkstra’s algorithm for a direct route
when battery capacity is sufficient

No. of Conducted

Test Cycles
Distance (m)

Processing Time

(ms)

1 0.86056 km 0.62 ms

2 0.81614 km 0.56 ms

3 0.86066 km 0.46 ms

4 1.07014 km 0.30 ms

5 0.86066 km 0.29 ms

Avg. Processing

Time
0.446 ms

Avg. Time per

Distance
0.000499 ms/km

Table 2. Computation time of Dijkstra’s algorithm including rerouting

logic when battery capacity is insufficient.

No. of Conducted

Test Cycles
Distance (m)

Processing Time

(ms)

1 0.04452 km 0.37 ms

2 0.06336 km 0.42 ms

3 0.04452 km 0.34 ms

4 0.05517 km 0.34 ms

5 0.20372 km 0.73 ms

Avg. Processing

Time
0.414 ms

Avg. Time per

Distance
0.000503 ms/km

The increased load results from additional

computations required to assess battery levels, identify

nearby charging stations, and determine whether alternate

paths are feasible. These decisions must be made in real

time, adding strain to the processing unit.

This tenfold increase in computational effort

emphasizes the importance of efficient algorithms and

local processing capability. Despite the higher

complexity, the system—running entirely on a Raspberry

Pi 5—maintained sub-millisecond processing times,

validating its suitability for real-time, embedded

applications.

The findings confirm that energy-aware navigation

using Dijkstra’s algorithm can be performed effectively

on low-cost hardware, The normalised energy

consumption value of 3.45 Wh/km and the consistent

performance across routing tasks provide reliable metrics

for future optimisation. Moreover, the insights from

processing time analysis reinforce the importance of

balancing algorithmic complexity with real-time

performance when designing intelligent navigation

systems for energy-constrained environments.

5. Conclusion
This study presents the implementation of an energy-

aware navigation system on a Raspberry Pi 5 platform

using Dijkstra’s algorithm. The system uses a pre-

processed road graph from OSM data and performs all

routing computations locally, eliminating reliance on

cloud-based processing. It integrates real-time GPS and

battery SoC data to compute energy-efficient routes

dynamically.

Dijkstra’s algorithm calculates the shortest path

based on distance and estimated energy usage. The system

reroutes to the nearest charging station if the remaining

battery is insufficient. A key advantage of this approach

is its ability to run entirely on embedded hardware. Even

when rerouting is triggered, computation times remain

low—within the sub-millisecond range—demonstrating

the feasibility of real-time path planning on compact, low-

cost devices.

Validation was carried out using a ground-based

wheeled drone under controlled conditions. Results

confirmed that the system could compute feasible routes

and estimate energy requirements accurately, achieving a

consistent average consumption rate of 3.45 Wh/km. This

value and live SoC data allow for intelligent navigation

decisions aligned with current energy availability.

In conclusion, the proposed system confirms the

effectiveness of Dijkstra’s algorithm for energy-aware

navigation and shows that local computation on

embedded platforms can support real-time decision-

making. This approach offers substantial potential for

navigation in energy—and infrastructure-limited

scenarios. Future work will explore more dynamic energy

models, incorporate terrain data and acceleration profiles

to improve estimation accuracy, and expand the system to

support real-time obstacle detection using LiDAR.

References
[1] A. Abubakar, M. A. P. Mahmud, T. Khandoker, and

A. L. Kiprakis, “An Energy-Aware Routing

Algorithm for Solar-Powered Unmanned Aerial

Vehicles,” 2023 IEEE Global Communications

Conference (GLOBECOM), Kuala Lumpur,

Malaysia, 2023, pp. 4905–4910,

[2] J. Jeong, B. Ghaddar, N. Zufferey, and J. Nathwani,

“Adaptive robust electric vehicle routing under

energy consumption uncertainty,” Proceedings of the

2022 IEEE International Conference on Services

Operations & Logistics, and Informatics (SOLI), pp.

1–6, Jul. 2022.

[3] S. Zhang, “An energy consumption model for

electrical vehicle networks via extended federated-

learning,” IEEE Access, vol. 9, pp. 150,123–150,134,

Nov. 2021.

[4] M. A. Navarro, L. Naranjo, and M. Á. Sotelo,

“OpenStreetMap-based autonomous navigation with

LiDAR naive-valley-path method,” IEEE Sensors

Journal, vol. 23, no. 2, pp. 1027–1037, Jan. 2023.

[5] Y. Modì, J. Bhattacharya, and P. Basak, “Estimation

of energy consumption of electric vehicles using deep

convolutional neural network to reduce driver’s range

anxiety,” ISA Transactions, vol. 98, pp. 454–466,

Mar. 2020. (Indexed by IEEE)

