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Abstract 
This paper presents an Energy-aware Navigation 

system designed for embedded platforms using Dijkstra’s 

algorithm implemented on a Raspberry Pi 5. The system 

combines real-time GPS input, OpenStreetMap-based 

mapping, and battery State of Charge (SoC) monitoring to 

compute energy-efficient paths while minimising total 

Energy Consumption. When energy is insufficient to 

reach the destination, the system reroutes through the 

nearest charging station. All Route Planning 

computations are performed locally on the Raspberry Pi 

5, with lightweight processing requirements suitable for 

real-time use on low-cost hardware. The system enables 

intelligent navigation decisions based on power 

availability by embedding energy constraints directly into 

the routing process. This approach highlights the potential 

of compact, flexible embedded systems to support 

adaptive path planning in energy-limited environments. 

Furthermore, the system provides a modular foundation 

for future expansion, including integrating advanced 

sensors, energy modeling enhancements, and context-

aware routing strategies for mobile platforms. 
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1. Introduction 

With the rise of vehicle technologies, modern 

navigation systems increasingly rely on GPS, digital 

maps, and shortest-path algorithms to improve 

transportation efficiency. These systems aim to minimise 

travel distance, time, and energy usage. Integrating route 

planning with real-time energy data is essential for 

energy-aware decision-making as energy becomes a 

critical concern, especially for electric vehicles. 

A simulation system was developed using a custom 

vehicle model with Raspberry Pi 5 as the core processor 

to address this. The system begins with a web interface 

where users select a destination, while the starting point is 

obtained via GPS. Battery SoC is detected through 

onboard sensors. This data is sent to the Pi, which uses the 

OSMnx library to convert OSM data into a weighted 

graph locally [1]. Dijkstra’s algorithm is then applied to 

compute the shortest, most energy-efficient path. 

If the estimated energy is insufficient, the system 

reroutes to the nearest charging station. The route is 

displayed via an interactive map, allowing users to view 

energy metrics and path details through a browser or 

onboard screen. 

Simulations confirm that the system computes 

energy-aware routes and adapts to battery status, two test 

cases were examined one with sufficient energy, and one 

without. In both, predicted energy use matched actual 

values. The system also achieved consistently low 

computation times, confirming its capability for real-time 

operation on embedded hardware. 

 

2. Methodology 

2.1 Overview of the Energy-Aware Navigation  

System Using Dijkstra's Algorithm 
This navigation system is built upon Dijkstra's 

algorithm, which computes the shortest and most energy-

efficient path within a graph-based road network. The 

system comprises five core components: a web-based user 

interface, Raspberry Pi 5 as the onboard processor, a 

vehicle equipped with a GPS module, a central server for 

data management, and OSM data. as shown in Fig. 1. 

illustrates the overall architecture and the interaction 

between these components, showing how each part 

collaborates to enable real-time, energy-aware navigation 

with minimal hardware resources. 

Firstly, the user selects a destination through the 

interface, while the Raspberry Pi 5 retrieves the vehicle's 

current location in real time using GPS data. The OSM 

data is pre-processed via the OSMnx library and stored 

locally on the Raspberry Pi as a weighted graph, where 

nodes and edges represent intersections and road 

segments with associated distance and energy cost 

attributes. 

When a route request is triggered, the Raspberry Pi 

loads the graph and executes Dijkstra's algorithm to 

compute the optimal path by minimising cumulative 

costs, such as travel distance or estimated energy usage. 

The system then calculates the total trip energy 

consumption and compares it to the remaining battery 

capacity. If the available energy is insufficient, it 

dynamically reroutes through the nearest charging station 

to ensure the trip's completion. 

Real-time GPS updates and SoC monitoring enable 

the system to adapt to changing travel and battery 

conditions. This ensures continuous, efficient, and 

energy-aware pathfinding throughout the journey, even 

under constrained power availability. 
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Fig. 1. Overview of the proposed energy-aware navigation system architecture based on real-time GPS and 

Dijkstra’s algorithm 

 
2.2  Pathfinding Process Using Dijkstra’s 

Algorithm 
The core of the navigation system's pathfinding logic 

is Dijkstra's Algorithm, a foundational and highly 

efficient method for determining the shortest path 

between two nodes in a weighted graph. The algorithm 

systematically explores the graph, guaranteeing the 

discovery of the most optimal route based on cumulative 

distance.  

The operational flow of The algorithm is 

demonstrated in the visualisation provided as shown in 

Fig. 2. In this specific example, the process begins at the 

designated start node (A) and is set to find the shortest 

path to the destination node (F). 

 

 
 

Fig. 2.  Visualisation of the Dijkstra's algorithm in progress, showing 

visited nodes and the current path exploration from Start Node A to 

Destination Node F 

 

Dijkstra’s Algorithm is a well-established graph 

traversal method used to determine the shortest path 

between two nodes in a weighted graph. The process 

begins with the initialisation step, where the source node 

is assigned a distance of zero. In contrast, all other nodes 

are given an initial value of infinity to signify that they are 

unreachable at the start. These nodes are then placed into 

a priority queue that helps maintain the order based on the 

smallest known distance. 

The Algorithm then proceeds into its iterative 

exploration phase. In each iteration, it extracts the 

unvisited node with the minimum known distance, 

marking it as the currently processing node. Once a node 

is processed—meaning all of its neighbors have been 

examined-it is marked as visited, signifying that the 

shortest path to that node has been finalised. 

The core mechanism of the Algorithm lies in the edge 

relaxation step. For each neighbor of the current node, the 

Algorithm calculates the potential new distance by 

summing the current node’s distance with the weight of 

the connecting edge. If this new value is smaller than the 

previously recorded distance for that neighbor, it is 

updated accordingly as shown in Eq. (1) 
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  (1) 

where 

 
( )d u  = Current known shortest distance from the 

source to node u  

( , )w u v  = Weight between node u and node v  

( )d v  = Current known distance to node v  

This process continues until the destination node is 

reached. At that point, the algorithm terminates and 

reconstructs the path by backtracking from the destination 

to the source, identifying the optimal route. This behavior 

is illustrated as shown in Fig. 2, where node A is the 

starting point and the shortest path is visually traced to the 

destination. The dashed line represents the finalized route. 

Driven by a greedy strategy, Dijkstra’s algorithm 

consistently prioritizes the most efficient paths, offering a 

reliable and computationally effective solution for route 

planning in vehicular navigation system.
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Fig. 3. System flowchart illustrating the process from initialisation to energy-aware routing, charging, and real-time navigation decisions. 
 

2.3 System Flowchart of Dijkstra-Based Routing  

with Energy-Aware Logic 

Figure. 3. shows the flowchart detailing the overall 

operational logic of the energy-aware route planning 

system implemented on Raspberry Pi 5, from initialisation 

to route execution and dynamic rerouting. 

The proposed energy-aware navigation system's 

operation begins with the Initialisation Phase, in which a 

pre-processed road graph—generated from OSM data 

using the OSMnx library—is retrieved from local storage 

on the Raspberry Pi. Concurrently, the system acquires 

the vehicle's current SoC and GPS coordinates to establish 

the initial conditions. 

Following this, the system proceeds to the Trip 

Planning stage, which displays the vehicle's current 

location and battery level to the user. The user then selects 

a desired destination through a graphical interface. 

Once the destination is set, the system enters the path 

Calculation phase. Here, Dijkstra's algorithm is employed 

to compute the shortest path from the current location to 

the selected destination based on the locally stored 

weighted road graph, as described as shown in Eq. (1). 

Additionally, the system estimates the total energy 

required for the trip using a predefined energy 

consumption rate derived from experimental data, as 

shown in Eq. (2).  

This value is then compared with the current battery 

capacity. If the available energy is insufficient, the system 

initiates the rerouting Logic, where the user is prompted 

to confirm whether to redirect through the nearest 

charging station or proceed with the current route under 

energy risk. 

Upon arrival at a charging station, the system 

requests the expected charging duration and updates the 

SoC accordingly. After charging, the system re-evaluates 

energy sufficiency and either resumes the original trip or 

loops back to recalculate a new route. 

 

trip rateE e d=     (2) 

where 
 

tripE  = Total energy required for the trip  

ratee  = Specific energy consumption rate per distance 

d  = Planned travel distance 

Subsequently, the energy sufficiency check is 

performed by comparing the estimated energy demand 

with the available battery level. If sufficient energy is 

available, the system proceeds directly to the trip. 

However, if the battery is deemed insufficient, the system 

prompts the user with the option to reroute.  

If the user accepts, the system locates the nearest 

charging station and updates the route accordingly; 

otherwise, it continues with the original high-risk path.  

Once routing is confirmed, the trip execution phase 

begins, involving real-time tracking of the vehicle’s 

position and energy consumption, while simultaneously 

displaying the planned route via an interactive web-based 

map. If the updated path includes a charging station, the 

charging station handling process is activated upon 

arrival. After charging, the system enters the post-

charging or trip completion phase to reassess the battery 
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status. If the updated SoC remains insufficient to reach the 

destination, the system halts and prompts the user to 

initiate a new route.  

If accepted, the process loops back to the trip 

planning phase; the session is terminated if declined. 

 

3.  Implementation 

3.1 Experimental Platform  
To evaluate the performance of the proposed energy-

aware navigation system, a ground-based wheeled drone 

was developed and employed as a platform for field 

testing, as shown in Fig. 4. 

 
 

Fig. 4. Ground-based wheeled drone used to record energy 

consumption during route execution. 
 

The objective of the test was to evaluate the system's 

ability to monitor and estimate energy consumption 

during actual route execution in a real-world environment. 

 To simulate realistic travel conditions, a ground-

based wheeled drone was used to traverse the computed 

path generated by the navigation system physically. The 

test aimed to reflect consistent movement behavior 

similar to practical deployments. Throughout the 

experiment, the vehicle followed the planned route 

without manual intervention.  

The system continuously tracked battery voltage and 

usage in real time, allowing for precise measurement of 

energy consumed during each trip. This empirical data 

provided a reliable basis for validating the energy 

estimation model integrated within the route planning 

algorithm. Moreover, conducting the test under controlled 

yet repeatable conditions ensured consistency across 

multiple runs, making it suitable for performance 

benchmarking. The resulting energy profiles contributed 

directly to assessing the algorithm's energy efficiency. 

Fig. 5. shows the battery voltage monitoring circuit, 

which illustrates the electrical schematic used to monitor 

the battery voltage in real time. This hardware component 

was critical in ensuring accurate SoC readings and 

supporting the system's energy-aware decision-making 

process. 

 
 

Fig. 5. Circuit diagram for battery voltage and GPS data 

acquisition using a voltage divider and ADS1115 connected to 

Raspberry Pi 5. 
 

The system uses a 12V, 15,000 mAh lithium-ion 

battery connected to a resistive voltage divider circuit that 

scales the voltage down to approximately 3V—within a 

safe range for analogue input. The scaled voltage is fed 

into an ADS1115 Analog-to-Digital Converter (ADC), a 

high-resolution 16-bit device communicating with the 

Raspberry Pi 5 via the I2C protocol. This setup enables 

accurate and continuous battery voltage monitoring under 

varying load conditions. 

The updated circuit diagram Fig. 5. combines voltage 

sensing and GPS acquisition into a unified hardware 

layout. The voltage divider reduces the 12V battery output 

to a safe level for the ADC input, and the ADS1115 

digitizes the voltage for real-time processing by the 

Raspberry Pi. A GPS module is also integrated into the 

circuit, powered by the same 12V source and connected 

to the Raspberry Pi 5 through a dedicated communication 

line (e.g., UART). the GPS module provides real-time 

location data, essential for dynamic route planning and 

distance estimation. 

This configuration ensures electrical safety and 

seamless location and energy data integration, enabling 

the system to make informed decisions. The measured 

battery voltage is converted to SoC using a predefined 

voltage-to-SoC mapping. This SoC value and GPS 

coordinates form the core input for the energy-aware 

routing algorithm. If the energy is insufficient to complete 

the planned trip, the system initiates rerouting to the 

nearest charging station, Including the GPS module 

enhances the system's ability to provide location-aware, 

energy-efficient navigation under real-world conditions. 

 

4.  Results and Discussion 
This section presents the experimental results 

obtained from the developed vehicle platform. We first 

validate the performance of the real-time battery 

monitoring system and then analyze the vehicle's energy 

consumption characteristics. Finally, we discuss the 

implications of these findings for the primary goal of this 

work, enabling energy-aware pathfinding. 

4.1 Discussion and Implications for Energy- 

Aware Pathfinding 
Integrating the validated battery voltage sensing 

circuit with the empirically measured energy consumption 

profile establishes a robust and practical platform for 

developing and evaluating energy-aware navigation 

algorithms. The proposed system highlights a closed-loop 

relationship between real-time energy monitoring and 
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dynamic route planning, forming this research's core 

focus.  

All computations, including graph processing, energy 

estimation, and pathfinding via Dijkstra's algorithm, are 

performed locally on a Raspberry Pi 5. This local 

processing approach reduces system latency, eliminates 

dependence on cloud computation, and ensures suitability 

for real-time operation in embedded environments. 

Two test scenarios were designed under controlled 

conditions to assess system performance. In the first 

scenario as shown in Fig. 6, the vehicle traveled from the 

campus main gate to a predefined building. While the 

vehicle reached the destination, the battery's SoC dropped 

to triggering a low battery warning. This emphasizes the 

need for accurate energy prediction to ensure route 

feasibility. The system recorded a specific energy 

consumption rate of 3.45 Wh/km, a benchmark for 

estimating energy requirements in subsequent routes. 

 

 
 

Fig. 6. Route followed without rerouting. The vehicle arrives with 

a critical battery level (5.78%), triggering a low battery warning. 
 

 
 

Fig. 7. Energy-aware rerouting to the nearest charging station due 

to insufficient battery for the original route. 

 

In the second scenario Fig. 7, the system identified 

that the remaining energy was insufficient for the original 

route. As a result, the rerouting logic was triggered, 

redirecting the vehicle to the nearest charging station, the 

vehicle completed the revised route with only SoC 

remaining and initiated a charging procedure.  

Based on real-time SoC feedback, this proactive 

adjustment validates the system's ability to make 

intelligent, energy-aware decisions and adaptively 

maintain safe navigation even under constrained energy 

conditions. 

4.2  Computational Demands of Dijkstra  

Route Planning 
To comprehensively evaluate the operational 

performance of electric vehicles, it is essential to assess 

energy consumption and computational processing time. 

While battery capacity and range are critical indicators of 

system longevity, the efficiency of the power system—

especially during real-time operations—directly affects 

practical usability and sustainability. Simultaneously, 

computational demands from onboard systems, 

particularly for dynamic route planning, significantly 

influence responsiveness, processing overhead, and 

overall energy utilisation. This study investigates these 

two interconnected aspects by rigorously quantifying 

energy consumption and analyzing processing time under 

distinct routing scenarios. The goal is to understand how 

energy and processing constraints affect navigation 

performance and decision-making on embedded 

platforms. 

An experimental evaluation was conducted using a 

10 kg ground-based vehicle powered by an 11.1 V, 15 Ah 

lithium-ion (Li-ion) battery. During testing, the vehicle 

maintained a constant speed of 30 km/h for 30 minutes, 

covering 15 kilometers. Throughout the experiment, the 

system drew an average current of 9.33 A, leading to an 

average power consumption of 103.56 W. The total 

energy consumed was 51.78 Wh, with a corresponding 

battery drain rate of 155.5 mAh/min. To enable consistent 

comparisons across use cases, this value was normalized 

to a specific energy consumption rate of 3.45 Wh/km, 

which serves as a benchmark for evaluating the energy 

cost of travel in various path scenarios. 

Table 1 summarizes the processing time for the 

standard route scenario. Across five test cycles, distances 

ranged from 0.81614 km to 1.07014 km, with processing 

times between 0.29 ms and 0.62 ms. The average 

processing time was 0.446 ms, and the average processing 

time per kilometer was calculated as 0.499 ms/km. 

Table 2 shows the rerouting scenario, where distances 

ranged from 0.04452 km to 0.20372 km. Processing times 

ranged from 0.34 ms to 0.73 ms, with an average of 0.414 

ms. The average processing time per kilometer slightly 

increased to 0.503 ms/km. 

While the raw average processing time remained 

similar across both scenarios, a deeper comparison of 

processing time per meter reveals a significant disparity. 

The system used only 0.000499 ms/m for standard 

routing, while energy-constrained rerouting required 

0.00503 ms/m—a computational cost approximately 10 

times higher per meter. This highlights the added 

complexity of decision-making under battery constraints. 
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Table 1. Computation time of Dijkstra’s algorithm for a direct route 
when battery capacity is sufficient 

No. of Conducted 

Test Cycles 
Distance (m) 

Processing Time 

(ms) 

1 0.86056 km 0.62 ms 

2 0.81614 km 0.56 ms 

3 0.86066 km 0.46 ms 

4 1.07014 km 0.30 ms 

5 0.86066 km 0.29 ms 

Avg. Processing 

Time 
0.446 ms 

Avg. Time per 

Distance 
0.000499 ms/km 

 
Table 2. Computation time of Dijkstra’s algorithm including rerouting 

logic when battery capacity is insufficient. 

No. of Conducted 

Test Cycles 
Distance (m) 

Processing Time 

(ms) 

1 0.04452 km 0.37 ms 

2 0.06336 km 0.42 ms 

3 0.04452 km 0.34 ms 

4 0.05517 km 0.34 ms 

5 0.20372 km 0.73 ms 

Avg. Processing 

Time 
0.414 ms 

Avg. Time per 

Distance 
0.000503 ms/km 

 

The increased load results from additional 

computations required to assess battery levels, identify 

nearby charging stations, and determine whether alternate 

paths are feasible. These decisions must be made in real 

time, adding strain to the processing unit. 

This tenfold increase in computational effort 

emphasizes the importance of efficient algorithms and 

local processing capability. Despite the higher 

complexity, the system—running entirely on a Raspberry 

Pi 5—maintained sub-millisecond processing times, 

validating its suitability for real-time, embedded 

applications. 

The findings confirm that energy-aware navigation 

using Dijkstra’s algorithm can be performed effectively 

on low-cost hardware, The normalised energy 

consumption value of 3.45 Wh/km and the consistent 

performance across routing tasks provide reliable metrics 

for future optimisation. Moreover, the insights from 

processing time analysis reinforce the importance of 

balancing algorithmic complexity with real-time 

performance when designing intelligent navigation 

systems for energy-constrained environments. 

 

5.  Conclusion 
This study presents the implementation of an energy-

aware navigation system on a Raspberry Pi 5 platform 

using Dijkstra’s algorithm. The system uses a pre-

processed road graph from OSM data and performs all 

routing computations locally, eliminating reliance on 

cloud-based processing. It integrates real-time GPS and 

battery SoC data to compute energy-efficient routes 

dynamically. 

Dijkstra’s algorithm calculates the shortest path 

based on distance and estimated energy usage. The system  

reroutes to the nearest charging station if the remaining 

battery is insufficient. A key advantage of this approach 

is its ability to run entirely on embedded hardware. Even 

when rerouting is triggered, computation times remain 

low—within the sub-millisecond range—demonstrating 

the feasibility of real-time path planning on compact, low-

cost devices. 

Validation was carried out using a ground-based 

wheeled drone under controlled conditions. Results 

confirmed that the system could compute feasible routes 

and estimate energy requirements accurately, achieving a 

consistent average consumption rate of 3.45 Wh/km. This 

value and live SoC data allow for intelligent navigation 

decisions aligned with current energy availability. 

In conclusion, the proposed system confirms the 

effectiveness of Dijkstra’s algorithm for energy-aware 

navigation and shows that local computation on 

embedded platforms can support real-time decision-

making. This approach offers substantial potential for  

navigation in energy—and infrastructure-limited 

scenarios. Future work will explore more dynamic energy 

models, incorporate terrain data and acceleration profiles 

to improve estimation accuracy, and expand the system to 

support real-time obstacle detection using LiDAR. 
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