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Abstract

This paper presents an Energy-aware Navigation
system designed for embedded platforms using Dijkstra’s
algorithm implemented on a Raspberry Pi 5. The system
combines real-time GPS input, OpenStreetMap-based
mapping, and battery State of Charge (SoC) monitoring to
compute energy-efficient paths while minimising total
Energy Consumption. When energy is insufficient to
reach the destination, the system reroutes through the
nearest charging station. All Route Planning
computations are performed locally on the Raspberry Pi
5, with lightweight processing requirements suitable for
real-time use on low-cost hardware. The system enables
intelligent navigation decisions based on power
availability by embedding energy constraints directly into
the routing process. This approach highlights the potential
of compact, flexible embedded systems to support
adaptive path planning in energy-limited environments.
Furthermore, the system provides a modular foundation
for future expansion, including integrating advanced
sensors, energy modeling enhancements, and context-
aware routing strategies for mobile platforms.

Keywords: Dijkstra’s algorithm, Energy Consumption,
Energy-aware Navigation, GPS, Raspberry Pi 5, Route
Planning

1. Introduction

With the rise of wvehicle technologies, modern
navigation systems increasingly rely on GPS, digital
maps, and shortest-path algorithms to improve
transportation efficiency. These systems aim to minimise
travel distance, time, and energy usage. Integrating route
planning with real-time energy data is essential for
energy-aware decision-making as energy becomes a
critical concern, especially for electric vehicles.

A simulation system was developed using a custom
vehicle model with Raspberry Pi 5 as the core processor
to address this. The system begins with a web interface
where users select a destination, while the starting point is
obtained via GPS. Battery SoC is detected through
onboard sensors. This data is sent to the Pi, which uses the
OSMnx library to convert OSM data into a weighted
graph locally [1]. Dijkstra’s algorithm is then applied to
compute the shortest, most energy-efficient path.

If the estimated energy is insufficient, the system
reroutes to the nearest charging station. The route is
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displayed via an interactive map, allowing users to view
energy metrics and path details through a browser or
onboard screen.

Simulations confirm that the system computes
energy-aware routes and adapts to battery status, two test
cases were examined one with sufficient energy, and one
without. In both, predicted energy use matched actual
values. The system also achieved consistently low
computation times, confirming its capability for real-time
operation on embedded hardware.

2. Methodology
2.1 Overview of the Energy-Aware Navigation
System Using Dijkstra's Algorithm

This navigation system is built upon Dijkstra's
algorithm, which computes the shortest and most energy-
efficient path within a graph-based road network. The
system comprises five core components: a web-based user
interface, Raspberry Pi 5 as the onboard processor, a
vehicle equipped with a GPS module, a central server for
data management, and OSM data. as shown in Fig. 1.
illustrates the overall architecture and the interaction
between these components, showing how each part
collaborates to enable real-time, energy-aware navigation
with minimal hardware resources.

Firstly, the user selects a destination through the
interface, while the Raspberry Pi 5 retrieves the vehicle's
current location in real time using GPS data. The OSM
data is pre-processed via the OSMnx library and stored
locally on the Raspberry Pi as a weighted graph, where
nodes and edges represent intersections and road
segments with associated distance and energy cost
attributes.

When a route request is triggered, the Raspberry Pi
loads the graph and executes Dijkstra's algorithm to
compute the optimal path by minimising cumulative
costs, such as travel distance or estimated energy usage.
The system then calculates the total trip energy
consumption and compares it to the remaining battery
capacity. If the available energy is insufficient, it
dynamically reroutes through the nearest charging station
to ensure the trip's completion.

Real-time GPS updates and SoC monitoring enable
the system to adapt to changing travel and battery
conditions. This ensures continuous, efficient, and
energy-aware pathfinding throughout the journey, even
under constrained power availability.
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Fig. 1. Overview of the proposed energy-aware navigation system architecture based on real-time GPS and
Dijkstra’s algorithm

2.2 Pathfinding Process Using Dijkstra’s
Algorithm

The core of the navigation system's pathfinding logic
is Dijkstra's Algorithm, a foundational and highly
efficient method for determining the shortest path
between two nodes in a weighted graph. The algorithm
systematically explores the graph, guaranteeing the
discovery of the most optimal route based on cumulative
distance.

The operational flow of The algorithm is
demonstrated in the visualisation provided as shown in
Fig. 2. In this specific example, the process begins at the
designated start node (A) and is set to find the shortest
path to the destination node (F).

Shortest path

Fig. 2. Visualisation of the Dijkstra's algorithm in progress, showing
visited nodes and the current path exploration from Start Node A to
Destination Node F

Dijkstra’s Algorithm is a well-established graph
traversal method used to determine the shortest path
between two nodes in a weighted graph. The process
begins with the initialisation step, where the source node
is assigned a distance of zero. In contrast, all other nodes
are given an initial value of infinity to signify that they are
unreachable at the start. These nodes are then placed into

a priority queue that helps maintain the order based on the
smallest known distance.

The Algorithm then proceeds into its iterative
exploration phase. In each iteration, it extracts the
unvisited node with the minimum known distance,
marking it as the currently processing node. Once a node
is processed—meaning all of its neighbors have been
examined-it is marked as visited, signifying that the
shortest path to that node has been finalised.

The core mechanism of the Algorithm lies in the edge
relaxation step. For each neighbor of the current node, the
Algorithm calculates the potential new distance by
summing the current node’s distance with the weight of
the connecting edge. If this new value is smaller than the
previously recorded distance for that neighbor, it is
updated accordingly as shown in Eq. (1)

Ifdw) +w(u,v) <d(v) )
=dv)=du)+w(u,v)
where
d(u) = Current known shortest distance from the
source to node U
wu,y) = Weight between node u and node v
d®v) = Current known distance to node v

This process continues until the destination node is
reached. At that point, the algorithm terminates and
reconstructs the path by backtracking from the destination
to the source, identifying the optimal route. This behavior
is illustrated as shown in Fig. 2, where node A is the
starting point and the shortest path is visually traced to the
destination. The dashed line represents the finalized route.

Driven by a greedy strategy, Dijkstra’s algorithm
consistently prioritizes the most efficient paths, offering a
reliable and computationally effective solution for route
planning in vehicular navigation system.
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Fig. 3. System flowchart illustrating the process from initialisation to energy-aware routing, charging, and real-time navigation decisions.

2.3 System Flowchart of Dijkstra-Based Routing
with Energy-Aware Logic

Figure. 3. shows the flowchart detailing the overall
operational logic of the energy-aware route planning
system implemented on Raspberry Pi 5, from initialisation
to route execution and dynamic rerouting.

The proposed energy-aware navigation system's
operation begins with the Initialisation Phase, in which a
pre-processed road graph—generated from OSM data
using the OSMnx library—is retrieved from local storage
on the Raspberry Pi. Concurrently, the system acquires
the vehicle's current SoC and GPS coordinates to establish
the initial conditions.

Following this, the system proceeds to the Trip
Planning stage, which displays the vehicle's current
location and battery level to the user. The user then selects
a desired destination through a graphical interface.

Once the destination is set, the system enters the path
Calculation phase. Here, Dijkstra's algorithm is employed
to compute the shortest path from the current location to
the selected destination based on the locally stored
weighted road graph, as described as shown in Eq. (1).

Additionally, the system estimates the total energy
required for the trip using a predefined energy
consumption rate derived from experimental data, as
shown in Eq. (2).

This value is then compared with the current battery
capacity. If the available energy is insufficient, the system
initiates the rerouting Logic, where the user is prompted
to confirm whether to redirect through the nearest
charging station or proceed with the current route under
energy risk.

Upon arrival at a charging station, the system
requests the expected charging duration and updates the
SoC accordingly. After charging, the system re-evaluates
energy sufficiency and either resumes the original trip or
loops back to recalculate a new route.

wip — Crate X d 2
where
Emp = Total energy required for the trip
€ = Specific energy consumption rate per distance
d = Planned travel distance

Subsequently, the energy sufficiency check is
performed by comparing the estimated energy demand
with the available battery level. If sufficient energy is
available, the system proceeds directly to the trip.
However, if the battery is deemed insufficient, the system
prompts the user with the option to reroute.

If the user accepts, the system locates the nearest
charging station and updates the route accordingly;
otherwise, it continues with the original high-risk path.
Once routing is confirmed, the trip execution phase
begins, involving real-time tracking of the vehicle’s
position and energy consumption, while simultaneously
displaying the planned route via an interactive web-based
map. If the updated path includes a charging station, the
charging station handling process is activated upon
arrival. After charging, the system enters the post-
charging or trip completion phase to reassess the battery
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status. If the updated SoC remains insufficient to reach the
destination, the system halts and prompts the user to
initiate a new route.

If accepted, the process loops back to the trip
planning phase; the session is terminated if declined.

3. Implementation
3.1 Experimental Platform

To evaluate the performance of the proposed energy-
aware navigation system, a ground-based wheeled drone
was developed and employed as a platform for field
testing, as shown in Fig. 4.

Fig. 4. Ground-based wheeled drone used to record energy
consumption during route execution.

The objective of the test was to evaluate the system's
ability to monitor and estimate energy consumption
during actual route execution in a real-world environment.

To simulate realistic travel conditions, a ground-
based wheeled drone was used to traverse the computed
path generated by the navigation system physically. The
test aimed to reflect consistent movement behavior
similar to practical deployments. Throughout the
experiment, the vehicle followed the planned route
without manual intervention.

The system continuously tracked battery voltage and
usage in real time, allowing for precise measurement of
energy consumed during each trip. This empirical data
provided a reliable basis for validating the energy
estimation model integrated within the route planning
algorithm. Moreover, conducting the test under controlled
yet repeatable conditions ensured consistency across
multiple runs, making it suitable for performance
benchmarking. The resulting energy profiles contributed
directly to assessing the algorithm's energy efficiency.

Fig. 5. shows the battery voltage monitoring circuit,
which illustrates the electrical schematic used to monitor
the battery voltage in real time. This hardware component
was critical in ensuring accurate SoC readings and
supporting the system's energy-aware decision-making
process.

Z200mm

GPS Module
AD SCI SCL v+

ADS1115 Raspberry Pi §

GND SDA SDA Comumucation

Battery 12V 34 | Voltage Divider
15000 mAb 12V 10 3V

Fig. 5. Circuit diagram for battery voltage and GPS data
acquisition using a voltage divider and ADS1115 connected to
Raspberry Pi 5.

+3.3V 33V GND GND

1T

The system uses a 12V, 15,000 mAh lithium-ion
battery connected to a resistive voltage divider circuit that
scales the voltage down to approximately 3V—within a
safe range for analogue input. The scaled voltage is fed
into an ADS1115 Analog-to-Digital Converter (ADC), a
high-resolution 16-bit device communicating with the
Raspberry Pi 5 via the 12C protocol. This setup enables
accurate and continuous battery voltage monitoring under
varying load conditions.

The updated circuit diagram Fig. 5. combines voltage
sensing and GPS acquisition into a unified hardware
layout. The voltage divider reduces the 12V battery output
to a safe level for the ADC input, and the ADS1115
digitizes the voltage for real-time processing by the
Raspberry Pi. A GPS module is also integrated into the
circuit, powered by the same 12V source and connected
to the Raspberry Pi 5 through a dedicated communication
line (e.g., UART). the GPS module provides real-time
location data, essential for dynamic route planning and
distance estimation.

This configuration ensures electrical safety and
seamless location and energy data integration, enabling
the system to make informed decisions. The measured
battery voltage is converted to SoC using a predefined
voltage-to-SoC mapping. This SoC value and GPS
coordinates form the core input for the energy-aware
routing algorithm. If the energy is insufficient to complete
the planned trip, the system initiates rerouting to the
nearest charging station, Including the GPS module
enhances the system's ability to provide location-aware,
energy-efficient navigation under real-world conditions.

4. Results and Discussion

This section presents the experimental results
obtained from the developed vehicle platform. We first
validate the performance of the real-time battery
monitoring system and then analyze the vehicle's energy
consumption characteristics. Finally, we discuss the
implications of these findings for the primary goal of this
work, enabling energy-aware pathfinding.
4.1 Discussion and Implications for Energy-
Aware Pathfinding

Integrating the validated battery voltage sensing
circuit with the empirically measured energy consumption
profile establishes a robust and practical platform for
developing and evaluating energy-aware navigation
algorithms. The proposed system highlights a closed-loop
relationship between real-time energy monitoring and
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dynamic route planning, forming this research's core
focus.

All computations, including graph processing, energy
estimation, and pathfinding via Dijkstra's algorithm, are
performed locally on a Raspberry Pi 5. This local
processing approach reduces system latency, eliminates
dependence on cloud computation, and ensures suitability
for real-time operation in embedded environments.

Two test scenarios were designed under controlled
conditions to assess system performance. In the first
scenario as shown in Fig. 6, the vehicle traveled from the
campus main gate to a predefined building. While the
vehicle reached the destination, the battery's SoC dropped
to triggering a low battery warning. This emphasizes the
need for accurate energy prediction to ensure route
feasibility. The system recorded a specific energy
consumption rate of 3.45 Wh/km, a benchmark for
estimating energy requirements in subsequent routes.

Route Summary

From: Main Gate

To: Bullding 98

Distance: 107 km
Processing Time: 0.00 ms

Q’Euilding 8
EV Charger (P)

Est. Battery Used: 332.81 mAh
Arrived with: 5.78%

Fig. 6. Route followed without rerouting. The vehicle arrives with
a critical battery level (5.78%), triggering a low battery warning.

Route Summary

From: Main Gate

To: EV Cnarger (E0)

Distance: 020

Processing Time: 220 ms

Est. Battery Used: 62.36 mah “EV Charger (Ed)
Arrived with: 1 56%

Est. Charge Time: 174 min

Fig. 7. Energy-aware rerouting to the nearest charging station due
to insufficient battery for the original route.

In the second scenario Fig. 7, the system identified
that the remaining energy was insufficient for the original
route. As a result, the rerouting logic was triggered,
redirecting the vehicle to the nearest charging station, the

vehicle completed the revised route with only SoC
remaining and initiated a charging procedure.

Based on real-time SoC feedback, this proactive
adjustment validates the system's ability to make
intelligent, energy-aware decisions and adaptively
maintain safe navigation even under constrained energy
conditions.

4.2 Computational Demands of Dijkstra
Route Planning

To comprehensively evaluate the operational
performance of electric vehicles, it is essential to assess
energy consumption and computational processing time.
While battery capacity and range are critical indicators of
system longevity, the efficiency of the power system—
especially during real-time operations—directly affects
practical usability and sustainability. Simultaneously,
computational demands from onboard systems,
particularly for dynamic route planning, significantly
influence responsiveness, processing overhead, and
overall energy utilisation. This study investigates these
two interconnected aspects by rigorously quantifying
energy consumption and analyzing processing time under
distinct routing scenarios. The goal is to understand how
energy and processing constraints affect navigation
performance and decision-making on embedded
platforms.

An experimental evaluation was conducted using a
10 kg ground-based vehicle powered by an 11.1 V, 15 Ah
lithium-ion (Li-ion) battery. During testing, the vehicle
maintained a constant speed of 30 km/h for 30 minutes,
covering 15 kilometers. Throughout the experiment, the
system drew an average current of 9.33 A, leading to an
average power consumption of 103.56 W. The total
energy consumed was 51.78 Wh, with a corresponding
battery drain rate of 155.5 mAh/min. To enable consistent
comparisons across use cases, this value was normalized
to a specific energy consumption rate of 3.45 Wh/km,
which serves as a benchmark for evaluating the energy
cost of travel in various path scenarios.

Table 1 summarizes the processing time for the
standard route scenario. Across five test cycles, distances
ranged from 0.81614 km to 1.07014 km, with processing
times between 0.29 ms and 0.62 ms. The average
processing time was 0.446 ms, and the average processing
time per kilometer was calculated as 0.499 ms/km.

Table 2 shows the rerouting scenario, where distances
ranged from 0.04452 km to 0.20372 km. Processing times
ranged from 0.34 ms to 0.73 ms, with an average of 0.414
ms. The average processing time per kilometer slightly
increased to 0.503 ms/km.

While the raw average processing time remained
similar across both scenarios, a deeper comparison of
processing time per meter reveals a significant disparity.
The system used only 0.000499 ms/m for standard
routing, while energy-constrained rerouting required
0.00503 ms/m—a computational cost approximately 10
times higher per meter. This highlights the added
complexity of decision-making under battery constraints.
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Table 1. Computation time of Dijkstra’s algorithm for a direct route
when battery capacity is sufficient

No. of Conducted Distance (m) Processing Time
Test Cycles (ms)
1 0.86056 km 0.62 ms
2 0.81614 km 0.56 ms
3 0.86066 km 0.46 ms
4 1.07014 km 0.30 ms
5 0.86066 km 0.29 ms
Avg. Processing 0446 ms
Time )
Avg. Time per 0.000499 ms/km
Distance

Table 2. Computation time of Dijkstra’s algorithm including rerouting
logic when battery capacity is insufficient.

No. of Conducted Distance (m) Processing Time
Test Cycles (ms)
1 0.04452 km 0.37 ms
2 0.06336 km 0.42 ms
3 0.04452 km 0.34 ms
4 0.05517 km 0.34 ms
5 0.20372 km 0.73 ms
Avg. Pfocessmg 0414 ms
Time
Avg. Time per 0.000503 ms/km
Distance
The increased load results from additional

computations required to assess battery levels, identify
nearby charging stations, and determine whether alternate
paths are feasible. These decisions must be made in real
time, adding strain to the processing unit.

This tenfold increase in computational effort
emphasizes the importance of efficient algorithms and
local processing capability. Despite the higher
complexity, the system—running entirely on a Raspberry
Pi 5—maintained sub-millisecond processing times,
validating its suitability for real-time, embedded
applications.

The findings confirm that energy-aware navigation
using Dijkstra’s algorithm can be performed effectively
on low-cost hardware, The normalised energy
consumption value of 3.45 Wh/km and the consistent
performance across routing tasks provide reliable metrics
for future optimisation. Moreover, the insights from
processing time analysis reinforce the importance of
balancing algorithmic complexity with real-time
performance when designing intelligent navigation
systems for energy-constrained environments.

5. Conclusion

This study presents the implementation of an energy-
aware navigation system on a Raspberry Pi 5 platform
using Dijkstra’s algorithm. The system uses a pre-
processed road graph from OSM data and performs all
routing computations locally, eliminating reliance on

cloud-based processing. It integrates real-time GPS and
battery SoC data to compute energy-efficient routes
dynamically.

Dijkstra’s algorithm calculates the shortest path
based on distance and estimated energy usage. The system
reroutes to the nearest charging station if the remaining
battery is insufficient. A key advantage of this approach
is its ability to run entirely on embedded hardware. Even
when rerouting is triggered, computation times remain
low—within the sub-millisecond range—demonstrating
the feasibility of real-time path planning on compact, low-
cost devices.

Validation was carried out using a ground-based
wheeled drone under controlled conditions. Results
confirmed that the system could compute feasible routes
and estimate energy requirements accurately, achieving a
consistent average consumption rate of 3.45 Wh/km. This
value and live SoC data allow for intelligent navigation
decisions aligned with current energy availability.

In conclusion, the proposed system confirms the
effectiveness of Dijkstra’s algorithm for energy-aware
navigation and shows that local computation on
embedded platforms can support real-time decision-
making. This approach offers substantial potential for
navigation in energy—and infrastructure-limited
scenarios. Future work will explore more dynamic energy
models, incorporate terrain data and acceleration profiles
to improve estimation accuracy, and expand the system to
support real-time obstacle detection using LiDAR.
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