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Abstract

Variations in the output parameters of a Wireless
Power Transfer (WPT) system are unavoidable,
particularly due to load fluctuations caused by the
battery’s state of charge (SOC). Therefore, an appropriate
compensation circuit topology is essential for maintaining
either a constant output voltage (CV) or a constant output
current (CC). This paper proposes an output current
control method for a WPT system using a primary-side
controller combined with wireless communication. A
Series-Series (SS) compensation topology is adopted to
ensure a load-independent output current characteristic.
NodeMCUs are employed on both the primary and
secondary sides to enable real-time feedback and control.
Experimental results demonstrate a stable output current
of 2 A across load resistances ranging from 6 to 20 Q, with
a maximum power transfer efficiency of 87.163%
achieved at a 16 Q load.

Keywords:  Output current control,  Wireless

communication, Wireless power transfer.

1. General Information

A Wireless Power Transfer (WPT) system transfers
power to a load via a loosely coupled transformer without
physical contact. This technology can be found in diverse
areas such as electric vehicles (EVs) [1], autonomous
robotics [2], and consumer electronics [3]. Compensation
circuit topologies are commonly applied in Inductive
Power Transfer (IPT) or Wireless Power Transfer (WPT)
systems. These circuits are tuned to resonate with the coil
inductances to maximize power transfer capability on
both sides, enhance system efficiency by enabling soft-
switching techniques such as Zero Voltage Switching
(ZVS) for the primary-side inverter, and achieve the
desired output characteristics. The output voltage or
current of WPT systems can vary across a wide range of
equivalent load conditions. Therefore, a suitable
compensation circuit topology is essential for maintaining
either a constant output voltage (CV) or constant output
current (CC), independent of the load conditions.
Conventional compensation topologies include four
topologies, each with a single compensation element on
both the primary and secondary sides: Series-Series (SS),
Series-Parallel (SP), Parallel-Series (PS), and Parallel-
Parallel (PP) [4]. A comparison of these four basic
topologies is presented in Table 1.

A primary-side parallel compensation circuit is
typically used with a current source inverter (CSI), but it
results in a larger hardware size due to the required DC-

Table 1 Comparison of four basic topologies
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link inductor. Topologies with a parallel-compensated
primary, such as Parallel-Series (PS) and Parallel-Parallel
(PP), provide constant output current (CC) and constant
output voltage (CV), respectively, under resonant
conditions. However, the resonant or operating frequency
in these configurations depends on the mutual inductance
and load resistance. As a result, the operating frequency
must be tracked, or the primary-side capacitance must be
tuned to accommodate specific variations.

On the other hand, a primary-side series
compensation circuit is commonly used with a voltage
source inverter (VSI), enabling a more compact hardware
design. The Series-Parallel (SP) topology provides a
constant output voltage (CV), but its operating frequency
still depends on the mutual inductance. Therefore, similar
to PS and PP topologies, the operating frequency must be
tracked, or the primary-side capacitance in the SP
topology must be adjusted to account for variations. The
Series-Series (SS) topology is extensively studied and
widely implemented. One of its key advantages is that the
resonant frequency remains independent of variations in
both the load and the mutual inductance between the
primary and secondary coils. As a result, the impedance
reflected from the secondary to the primary side is purely
resistive. This characteristic significantly simplifies the
control strategy, allowing fixed frequency operation.
Moreover, the SS topology inherently exhibits a constant
output current or load-independent output current
characteristic, which is highly beneficial for battery
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charging applications during the constant current (CC)
mode [5]. However, regulating a constant charging
current under varying system parameters such as load
fluctuations or air gap changes remains critical. To
address this, conventional systems often incorporate
converters on the secondary side to precisely regulate the
charging current. Nevertheless, this approach results in a
more complex and bulky secondary side structure, with an
increased number of components, greater complexity, and
larger overall system size [6].

This paper presents output current control through a
primary side controller using wireless communication for
the proposed WPT system. The control system is
specifically designed to provide accurate current
regulation using NodeMCUs. The paper is organized as
follows: Section 2 presents an analysis of the design
parameters for the SS topology, Section 3 describes the
proposed WPT system, and Section 4 provides
experimental results to confirm the system performance.

2. Analysis of Series-Series Topology

An SS topology consists of a primary coil (L,) and a
secondary coil (L;) magnetically coupled through a
mutual inductance (M). The coupling coefficient can be
expressed as

M

To compensate the inductive reactance of the coils and
achieve resonance, a capacitor is placed in series with
each coil, C, on the primary side and C; on the secondary
side. The circuit is driven by a high-frequency AC voltage
source (V) on the primary side, and the transferred power
is delivered to a load (R;) on the secondary side as shown
in Figure 1. The secondary impedance can be calculated

by
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The reflected impedance can be expressed by
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Fig. 1 Equivalent of SS topology
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Hence, the input impedance (Z;,) can be described by
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The primary and secondary circuits are tuned to resonate
at the same angular frequency (wy). This resonant
condition is crucial for maximizing power transfer
efficiency. The resonant frequency is determined by the
inductance and capacitance values in each circuit, which
expressed by
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The SS topology exhibits a load-independent output
current characteristic at the resonant frequency (wo). The
secondary current (Z;) can be expressed as

”
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Therefore, the output current (/,) can be calculated by
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3. Proposed WPT System

A circular coil was chosen to validate the proposed
WPT system. The coil dimensions, designed to suit low-
power applications with a vertical air gap of 5 cm, are
shown in Figure 2.

Table 2 Electrical parameters for the proposed WPT system

Parameters Values Unit
Inverter frequency (fiw) 85 kHz
Buck converter frequency (fpuck) 25 kHz
Input voltage (Vi) 48 \Y%
Primary coil inductance (L,) 74 uH
Secondary coil inductance (Ly) 74 uH
Primary capacitance (C,) 47 nF
Secondary capacitance (C,) 47 nF
Mutual inductance (M) 19.24 uH

Fig. 2 Coil dimensions and vertical air gap arrangement
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Fig. 3 Proposed WPT system

The proposed WPT system comprises a primary and
a secondary circuit. The primary circuit integrates a buck
converter, a full-bridge inverter, a primary capacitor, and
a primary coil. The secondary circuit contains a secondary
coil, a capacitor, a bridge rectifier, and a capacitive filter
connected to a load. Figure 3 provides a schematic
illustration of the system, and its specified electrical
parameters are presented in Table 2. An input voltage of
48 volts is supplied to a buck converter, which operates at
a switching frequency of 25 kHz. The amplitude of the
primary voltage is regulated by a PI controller. This
controller continuously adjusts the buck converter’s
output by comparing a reference current to feedback
output current data sent wirelessly from the secondary
side via NodeMCUs. The inverter then converts the
regulated DC voltage into a high-frequency square-wave
voltage, operating at a fixed resonant frequency (fy) of 85
kHz.

4. Experiment
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Fig. 4 Hardware prototype

The hardware prototype was constructed to verify the
proposed method using a 6 Q load, as shown in Figure 4.
The experimental results in Figure 5 show that the DC
input voltage (Vi,) was 47.9 V, with an input current ()
of 612 mA. Correspondingly, the experimental results in
Figure 6 illustrate that the primary voltage (7)) was 26.39
V, with an primary current (/,) of 1.41 A, while the
secondary voltage (V) was 14.02 V with an secondary
current () of 223 A as shown in Figure 7.

Correspondingly, the experimental results in Figure 8
illustrate that the output voltage (V,u) was 11.54 V, with
an output current (L) of 2.03 A.

Furthermore, the graph in Figure 9 shows the
relationship between load resistance and the output
parameters (Vo and Io,) of the proposed WPT system.
The output current (/) remains nearly constant at
approximately 2 A over the tested load range of 6 Q to 20
Q, indicating effective load-independent characteristics.
Meanwhile, the output voltage (V,.) increases linearly
from about 11.5 V to over 38.99 V as the load resistance
increases.
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Fig. 6 Experimental waveforms of V), and 1,
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The efficiency shown in Figure 10 initially increases from
79.912% at a load of 6 Q, reaching a maximum value of
87.163% at 16 Q. Beyond this load resistance value,
efficiency gradually decreases, falling to 84.424% at a
load of 20 Q. These results indicate that the system
operates most efficiently at a load of 16 Q.
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Fig. 10 Efficiency versus different load resistances

5. Conclusions

The proposed SS WPT system effectively maintains
load-independent output current control using primary-
side regulation and wireless feedback. Experimental
validation demonstrates that the system maintains a
constant output current of approximately 2 A over varying
load conditions (6 Q to 20 Q), while achieving a peak
efficiency of 87.163% at a 16 Q load. These results
highlight the effectiveness of the primary-side control
strategy in WPT applications.
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