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Abstract

This paper proposes an output voltage control method
for Wireless Power Transfer (WPT) systems that uses
primary-side parameter estimation, eliminating the need
for wireless communication between the primary and
secondary sides. Conventional closed-loop control
methods typically rely on a dedicated wireless
communication channel to send feedback from the
secondary side, which adds cost, complexity, and
potential reliability issues. The proposed method
overcomes these drawbacks by implementing a primary-
side controller that analyzes the primary-side voltage and
current waveforms to accurately estimate the output
voltage. This estimation allows for the direct calculation
and precise regulation of the output voltage across varying
load conditions. Experimental results validate the
proposed system, demonstrating stable output voltage and
high efficiency.

Keywords: Output voltage control, Parameter estimation
method, Wireless power transfer.

1. General Information

Wireless power transfer (WPT) systems are used in
charging applications such as biomedical implants [1],
mining applications [2], underwater applications [3], and
electric vehicles (EVs) [4]. The ability to transfer power
across an air gap without physical connectors enhances
safety, durability, and user experience. Among the various
WPT topologies, inductively coupled power transfer
(IPT) systems are widely adopted due to their high
efficiency and power capability [5]. The compensation
topology in a WPT system is normally applied minimize
the VA rating and maximizing the power transfer
efficiency of the loosely coupled coils.

In wireless power transfer systems, there are four
basic compensation topologies: Series-Series (SS),
Series-Parallel (SP), Parallel-Series (PS), and Parallel-
Parallel (PP) [5]. The Series-Series (SS) compensation
topology is widely used due to its high power efficiency
and purely resistive reflected impedance. A critical
challenge in the practical implementation of SS topology
in WPT systems is regulating the output voltage on the
secondary side, as it is highly sensitive to variations in
load resistance. However, applying an SS topology in a
WPT system at its resonant frequency results in a constant
current output [5]. Consequently, the output voltage
varies directly with the load, making it difficult to
regulate. To maintain a constant output voltage,
conventional systems typically require an additional DC-
DC converter on the secondary side, complex control
schemes, and wireless communication between the
primary and secondary sides [6] as shown in Figure 1.
Nevertheless, achieving stable voltage regulation across a
wide range of load variations remains a significant
challenge.

This paper proposes an output voltage control method
for WPT systems that uses a primary-side controller,
eliminating the need for secondary-to-primary
communication. The controller analyzes primary-side
voltage and current waveforms to accurately estimate the
output voltage. This enables the direct calculation and
precise regulation of the output voltage across a wide
range of operating load conditions. This paper is
organized as follows: Section 2 presents an analysis of the
design parameters for the SS topology, Section 3
describes the details of the coil design, Section 4 presents
the proposed WPT system, and Section 5 provides
experimental results to validate the system’s performance.
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2. Analysis of SS Topology
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Fig. 2 Equivalent of SS topology

The equivalent circuit of the series—series
compensated circuit (SS topology) is shown in Figure 2.
The circuit consists of the primary side and the secondary
side. On the primary side, the primary voltage (V) is
connected in series with the primary capacitor (C,) and
the primary coil (L,). The primary impedance can be
calculated by

1
Z =jolL + 1
L, = aa (1)

On the secondary side, the secondary coil (Ly) is
connected in series with the secondary capacitor (Cs) and
the load (R;). The secondary impedance can be calculated
by

1
Z, = joL +———+R, )
joC

Both sides of the circuit are magnetically coupled. The
impedance of the secondary side is reflected to the
primary side through the mutual inductance (M). The
reflected impedance can be expressed by

2 2

Z,=—joMI, = 3)

Therefore, the input impedance (Z;,) can be calculated by

Z,=Re(z,)+Im(Z,)=Z, +Z, @

A WPT system is typically designed to operate at the same
resonant frequency (wg) on both sides. This causes the
input reactance to become zero, enhancing power transfer
capability and minimizing the supply’s apparent power
(VA) rating. The resonant frequency can be expressed by

@, = = (5)
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The SS topology provides a load-independent output
current characteristic at the resonant frequency (wo). The
amplitude of the secondary current (/i) in terms of the
primary voltage (V) at the resonant frequency which can
be expressed by

V
|I~‘|a):a)0 = wojw (6)

The secondary voltage (Vs) at the resonant frequency can
be calculated by

V,=joMl, ()

However, the amplitude of the secondary voltage (V5) in
terms of the primary voltage (7)) at the resonant frequency
depends on load, which can be expressed as

RV,

= oM

®)

K

Therefore, this paper presents a method for estimating the
secondary-side voltage using mathematical approximation
based on primary-side parameters, with the obtained value
used to control the output voltage. The parameter
estimation method will be presented in Section 4.

3. Coil Design

A circular coil was selected for its simplicity and
symmetrical shape. The coil parameters are listed in Table
1, and the coil prototypes are shown in Figure 3. The
dimensions are designed to suit low-power applications,
such as mobile robotics, with a 5 cm air-gap.

Table 1 Parameters of coils

Parameters Values Unit
Inner radius 5 cm
Outer radius 15 cm
Coil inductance: Ly 74.16 pH
Coil inductance: Ls 73.74 uH
Mutual inductance 21.24 uH

Fig. 3 Coil prototype
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Fig. 4 Proposed WPT system

4. Proposed WPT System

The proposed WPT system is a composite of the
primary side and secondary side. The primary side
includes a buck converter, a full-bridge inverter, a primary
capacitor, and a primary coil. The secondary side includes
a secondary coil, a secondary capacitor, a bridge diode
rectifier, a capacitive output filter, and load. The
schematic of the proposed WPT system is shown in
Figure 4 and the electrical parameters listed in Table 2.
A DC input voltage of 48 volts is supplied to a buck
converter, which operates at a switching frequency of 25
kHz. The buck converter controls the amplitude of the
voltage supplied to the inverter. The inverter then
converts the DC voltage obtained from the buck converter
into a high-frequency square-wave voltage. The fixed-
frequency control was adopted in the paper to provide a
the resonant frequency (fo = 85 kHz).

The method for estimating the secondary-side
voltage, based on the secondary-side voltage equation at
the resonant frequency in (8), can be performed by
approximating the load resistance from the primary-side
parameters, which can be estimated by

2202
w," M~1
RL,est = Tp (9)

P

Therefore, the secondary voltage can be approximated
using a primary-side parameter estimation method that
includes the primary voltage, primary current, and
estimated load resistance, which can be calculated by

o—ay Y VpIpRL,zst

The square waveform of the secondary voltage can be
described as,

(10)

s,est

41 I .
= m — t
- > . sin (nayt)

VS,ESI (t)

where i=1,2,3,...,n.

(11)

Table 2 Electrical parameters for the proposed WPT system

Parameters Values Unit
Inverter frequency (fin) 85 kHz
Buck converter frequency (fsuc) 25 kHz
DC input voltage (Vpc) 48 \
Primary coil inductance (L,) 74.16 uH
Secondary coil inductance (L) 73.74 uH
Primary capacitance (C,) 46.81 nF
Secondary capacitance (Cy) 46.94 nF
Mutual inductance (M) 21.24 uH

Therefore, the output voltage across the bridge rectifier
with a capacitive output filter can be estimated by,

.

O, est

—2v, (12)

s, est

W=, -

where Vr is forward voltage of bridge diode.

The estimation of output voltage in (12) was calculated in
the microcontroller unit and used as feedback for PI
controller. Hence, the output voltage can be controlled by
a buck converter on the primary side as illustrated in
Figure 4.

5. Experiment

A hardware prototype with a 11 Q load resistance was
constructed to verify the proposed method, as shown in
Figure 5.
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Fig. 5 Hardware prototype
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The experimental results indicated a DC input voltage
(Vbc) of 47.3 V and an input current (Ipc) of 1.42 A, as
illustrated in Figure 6. Correspondingly, Figure 7 shows a
primary voltage (V) of 33.2 V with a primary current (/)
of 2.52 A, and a secondary voltage (V;) of 27.7 V with a
secondary current (/) of 2.63 A. Finally, the results in
Figure 8 illustrate an output voltage (Vo) of 24.5 V and an
output current (/o) of 2.32 A.
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Fig. 6 Experimental waveforms of V¢ and Ipc
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Fig. 7 Experimental waveforms of Vp, Ip, Vs, and Is
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Fig. 9 Output voltage and output current versus different load

resistances
1000 84.6 87.6 81.5 80.6
_. 800 A A A A
Q
5 60.0
o=
E 40.0
<200
0.0
11.0 12.0 13.0 14.0
Load Resistance ()

Fig. 10 Experimental Efficiency versus load resistances

Subsequently, varying load resistance was set up in
the experiment to demonstrates constant output voltage
behavior. The graph in Figure 9 illustrates the relationship
between load resistance, output voltage (V,), and output
current (/,). As the load resistance was increased from 11
Q to 14 Q, the output voltage (blue line) remained highly
stable, fluctuating minimally between 24.2 V and 24.5 V.
In contrast, the output current (orange line) showed a clear
inverse relationship with resistance, decreasing steadily
from a maximum of 2.3 A at 11 Q to a minimum of 1.9 A
at 14 Q.

Figure 10 shows the system’s efficiency as a function
of varying load resistance from 11 Q to 14 Q. Efficiency
initially increases with resistance, rising from 84.6% at 11
Q to a peak of 87.6% when the load resistance is 12 Q.
Beyond this optimal point, efficiency continues to drop,
reaching 81.5% at 13 Q and 80.6% at 14 Q. This trend
demonstrates that the system achieves its maximum
operational efficiency at a specific load resistance of 12
Q.

6. Conclusions

This paper validates a primary-side control method
for a Series-Series (SS) Wireless Power Transfer (WPT)
system that eliminates the need for a secondary wireless
communication. The controller accurately regulates the
output voltage by estimating it from primary-side voltage
and current measurements. A hardware prototype
confirmed the method’s effectiveness, maintaining a
stable at 24 V (£2%) output under varying loads (11 to 14
Q) while achieving a maximum efficiency of 87.6%.
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