

Verification Method of Ratio Error of Direct Current Comparator Bridge in Standard Resistor Measurement

Alisa Dawroyram¹, Jutarat Tanarom², and Ploybussara Gomasang^{1*}

¹Dept. of Electrical Eng., Fac. of Eng. and Industrial Tech., Silpakorn University, Nakhon Pathom, Thailand, and ²National Institute of Metrology (Thailand), Pathumthani 12120, Thailand, dawroyram a@silpakorn.edu, jutarat@nimt.or.th, and gomasang p@su.ac.th*

Abstract

This work presents a verification method for determining the ratio error of a Direct Current Comparator (DCC) bridge, model 6010C, in primary resistance metrology. The proposed R-group method employs three CCC-calibrated standard resistors with proven long-term stability to evaluate the 1:1 resistance ratio error across resistance ranges of 1 Ω , 100 Ω , and 10 k Ω . The measured ratio errors were $-0.082 \,\mu\Omega/\Omega$, $-0.032 \,\mu\Omega/\Omega$, and 0.061 $\mu\Omega/\Omega$, respectively, with combined standard uncertainties (k = 1) in the range of 0.022 $\mu\Omega/\Omega$ to 0.025 $\mu\Omega/\Omega$, which are lower than those obtained using the traditional Exchanging method. All calculated E_n ratios were below one, confirming the consistency and reliability of the results. The findings indicate that the R-group method provides a precise and efficient alternative for DCC bridge verification and a guideline for calibration, particularly in testing/calibration laboratories without access to a cryogenic current comparator.

Keywords: Standard Resistor, Direct Current Comparator Bridge (DCC bridge), Calibration, Verification

1. Introduction

The Direct Current Comparator (DCC) bridge [1] is an instrument widely used in primary resistance metrology for measuring the resistance ratio between two 4-terminal standard resistors, denoted as R_1 and R_2 , as shown in Figure 1. This system provides a base relative accuracy of 1×10^{-7} within the intermediate resistance range from 1Ω to $10 \text{ k}\Omega$.

In the operation of a DCC bridge, two current sources are utilized: the primary current (I_1) and the secondary current (I_2) . These currents flow through the primary winding (N_1) and secondary winding (N_2) , respectively. As current passes through each winding, magnetomotive forces, N_1I_1 and N_2I_2 , are generated. The DCC bridge system maintains balance by automatically adjusting both the number of turns in the secondary winding (N_2) and the magnitude of the secondary current (I_2) , as described in reference [1]. Equilibrium is achieved when the resulting magnetic flux in the core is zero, which is typically indicated by a null reading on the galvanometer (G) or precision reference voltmeter. At this point, the voltage drop across two standard resistors can be measured accurately. The relationships among these parameters are described in equations (1) and (2).

$$I_1 N_1 = I_2 N_2 \tag{2}$$

In the measurement process, both the forward current and the backward current must be measured to reduce the impact of thermal electromotive force (EMF) caused by temperature differences at the metal junctions [2]. The Cryogenic Current Comparator (CCC) [3], which has higher accuracy than DCC, is used as a reference standard to calibrate DCC by comparing the ratio measurement of the same pair of resistors. The calibration results indicate that the uncertainty of the DCC resistance ratios is less than $10^{-8} \, \Omega/\Omega$, [4].

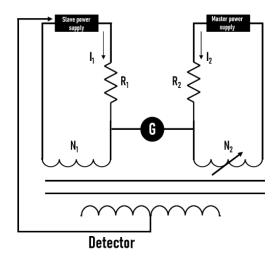


Fig. 1 The basic electrical circuit of a DCC bridge using a galvanometer for voltage measurement.

In precision resistance ratio measurements using a DCC bridge, the bridge ratio errors must be carefully considered. Such errors can arise from factors including winding deviations within the bridge, residual magnetic flux, hysteresis effects, and the sensitivity and stability nanovolt-level measurements Consequently, calibration of the DCC bridge is essential to quantify these ratio errors and to assess the uncertainty of the measured resistance ratio. Previous studies have employed the two-reference-resistor commonly Exchanging method for DCC bridge verification [2]. The aim of this work is to validate the R-group method for DCC bridge calibration in the absence of a CCC bridge. This work presents the R-group method for determining the ratio error of DCC bridges using three standard resistors calibrated with a CCC bridge. The method is

 $I_1 R_1 = I_2 R_2 \tag{1}$

^{*}Corresponding Author

วันที่ 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จังหวัดเชียงใหม่

applied to evaluate the ratio error of a commercial DCC bridge (model 6010C) at 1:1 ratios of 1 Ω , 100 Ω , and 10 $k\Omega$, with measurement configurations set according to the manufacturer's specifications. Validation is performed by comparison with the conventional Exchanging method, with the E_n ratio assessed for each resistance range. A comprehensive uncertainty evaluation of the DCC bridge using the R-group method is conducted to ensure that the method is efficient and reliable.

2. Methodology

2.1 R-group Method

The R-group method is a method developed by measuring the resistance values in a group of standard resistors. Based on the relationship between the resistance values in the group, the DCC ratio error can be checked and determined. The R-group method uses at least three standard resistors to measure a 1:1 ratio of the DCC bridge. The ratio error is determined by calculating the difference between the measured value and the certified values of the standard resistors, as shown in equation (3):

$$Error value = Measured value - True value$$
 (3)

If the measured value does not equal the true value, the resistance ratio of the DCC bridge can be assumed as follows in equations (4) to (6).

$$\frac{R_1}{R_2} = X_1 - \Delta Y_0 \tag{4}$$

$$\frac{R_{1}}{R_{2}} = X_{1} - \Delta Y_{0}$$

$$\frac{R_{2}}{R_{3}} = X_{2} - \Delta Y_{0}$$
(5)

$$\frac{R_{_3}}{R} = X_{_3} - \Delta Y_{_0} \tag{6}$$

Equations (4), (5), and (6) are multiplied and equal to one due to all multiplied resistance ratios, as shown in equation (7).

$$1 = (X_1 - \Delta Y_0)(X_2 - \Delta Y_0)(X_3 - \Delta Y_0)$$
 (7)

The ratio error of the DCC bridge can be obtain as in equation (8)

$$\Delta Y_0 = \frac{-1 + X_1 X_2 X_3}{X_1 X_2 + X_1 X_3 + X_2 X_3} \tag{8}$$

Where ΔY_0 is the bridge ratio error, and X_1, X_2, X_3 are the resistance ratios of R₁/R₂, R₂/R₃, and R₃/R₁, respectively, measured by the DCC bridge.

2.2 Instrument and Measurement

The DCC bridge used in this study is the MI 6010C (Measurements International Model 6010C) [6]. For the 1:1 ratio measurement by the R-group method, three standard resistors are used. They are arranged in three pairs, each pair containing two resistors. The DCC bridge is set up according to the manufacturer's manual, with further details provided in Table 1. The two standard resistors are connected to the DCC bridge, as shown in Figure 2.

In this experiment, 1 Ω , 100 Ω , and 10 k Ω standard resistors were used as the primary reference standards. The R_1 , R_2 , and R_3 standard resistors were calibrated by the Bureau International des Poids et Mesures (BIPM) using a Cryogenic Current Comparator (CCC) bridge, which provides high accuracy, stability, and reliability, with a measurement uncertainty of $1 \times 10^{-9} \Omega/\Omega$. Each standard resistor has a measurement history of more than ten years, allowing the prediction of short-term resistance changes in the part-per-billion (ppb) per day range. For the standard resistors used in this work, three 1 Ω resistors (in oil) were employed: two Leeds & Northrup 4210 and one Leeds & Northrup 4210B. For the 100 Ω standard, three resistors were used: two in air (Tegam SR102 and IET SR102) and one Tinsley 5685A (in oil). For the 10 $k\Omega$ standards, two Tegam SR104 (in air) and one Leeds & Northrup 4214 (in oil) were used. For the $10 \text{ k}\Omega$ standards, two Tegam SR104 (in air) and one Leeds & Northrup 4214 (in oil) were used. The resistors immersed in oil baths were maintained at a controlled temperature of (23.0 \pm 0.5) °C. The air-stored resistors were kept in a laboratory environment controlled at (23.0 ± 2.0) °C and relative humidity of (50 ± 15) %RH. In this work, measurements were performed by alternately rotating the connection of the standard resistors in both clockwise and counterclockwise sequences.

In each measurement cycle, each resistance ratio was collected 35 times repeatedly, with the first 10 values discarded, and the remaining 25 values were then calculated to obtain the mean and standard deviation. This approach allows verification of the measured ratio error and provides an assessment of the repeatability of the measurement results.

Table 1 Measurement configurations of DCC bridge model 6010C for 1:1 resistance ratio.

Resistance ratio	Current test (mA)	Reversal rate (s)	Measurements
1 Ω: 1 Ω	50	6	35
100 Ω: 100 Ω	0.5	12	35
10 kΩ: 10 kΩ	0.3	20	35

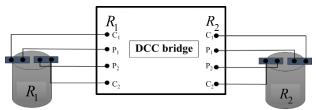


Fig. 2 Cable connections of DCC bridge measurement system

Results and Discussion

To evaluate the uncertainty of the ratio error measurement of the DCC bridge obtained from the R- The 48th Electrical Engineering Conference (EECON-48)

วันที่ 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จังหวัดเชียงใหม่

group method, several sources of uncertainty should be considered, such as type A uncertainty, nonlinearity, instrument resolution, resistance standard stability, temperature effect, and power effect. Each of these factors affects the total uncertainty obtained from the analysis, and can be described in a mathematical model, as shown in equation (9):

$$u_{c} = u_{A} + u_{nonlin} + u_{res} + u_{sta,R_{1}} + u_{sta,R_{2}} + u_{sta,R_{3}} + u_{TC,R_{1}} + u_{TC,R_{2}}$$

$$+ u_{TC,R_{3}} + u_{P,R_{1}} + u_{P,R_{2}} + u_{P,R_{3}} + u_{uni}$$

$$(9)$$

Where:

 u_{A} is uncertainty from Type A u_{nonlin} is uncertainty from nonlinearity u_{res} is uncertainty from resolution u_{sta,R_1} is short-term stability of R_1 u_{sta,R_2} is short-term stability of R_2 u_{sta,R_3} is short-term stability of R_3 u_{TC,R_1} is temperature coefficient of R_1 u_{TC,R_2} is temperature coefficient of R_2 u_{TC,R_3} is temperature coefficient of R_3 u_{P,R_1} is power effect of R_1 u_{P,R_2} is power effect of R_2 u_{P,R_3} is power effect of R_3 u_{uni} is uniformity of bath

and show the details of the calculation of the uncertainty source, as shown in Table 2. The type A, short-term stability and power values are as follow: $5.89 \times 10^{-3} \,\mu\Omega/\Omega$, 1.00×10^{-2} μΩ/Ω, and 1.44×10^{-5} (for 100 Ω: 100 Ω) and $6.69\times10^{-3}~\mu\Omega/\Omega,~1.00\times10^{-2}~\mu\Omega/\Omega,~and~5.20\times10^{-4}~\mu\Omega/\Omega$ (for 100 Ω : 100 Ω), respectively. The evaluations of combined uncertainty by the R-group method of 1 Ω , 100 Ω , and 10 k Ω ranges are 0.025 $\mu\Omega/\Omega$, 0.022 $\mu\Omega/\Omega$, and $0.023 \mu\Omega/\Omega$, respectively. In addition, the uncertainty values obtained from the R-group method were compared with the Exchanging method; the comparative results and calculated uncertainty values are summarized in Table 3. When comparing the uncertainty values of the resistance ratios obtained by the two methods, the R-group method yields significantly lower uncertainty than the Exchanging method. The R-group method yields an uncertainty in range of 0.022 $\mu\Omega/\Omega$ to 0.025 $\mu\Omega/\Omega$, while the Exchanging method yields a higher uncertainty in rang of 0.031 $\mu\Omega/\Omega$ to 0.042 $\mu\Omega/\Omega$. It should be noted that the evaluation of measurement uncertainty by using the Exchanging method can be calculated with the source of standard uncertainty [3]. The R-group method yields a lower overall uncertainty due to the use of three standard resistors in the ratio measurement. This approach reduces the impact of individual variables and allows for a more comprehensive and reliable assessment of data uncertainty. Due to the use of only two standard resistors and the alternating measurement positions by using the

Exchanging method, the average and uncertainty estimates are more susceptible to other sources of error than those of the R-group method.

Table 2 Uncertainty budget for the 1 Ω :1 Ω R-group measurement

Table 2 Uncertainty budget for the 1 \(\Omega\): 1 \(\Omega\) R-group measurement					
Uncertainty sources	Probability distribution	Divisor	Sensitivity coefficient	Uncertainty contribution (μΩ/Ω)	
Type A	Normal	1	1	1.16×10^{-2}	
Nonlinearity of the bridge	Rectangular	$\sqrt{3}$	1	5.77 × 10 ⁻³	
Resolution of the bridge	Rectangular	$\sqrt{3}$	1	2.89 × 10 ⁻⁴	
Short-term stability of R_I	Rectangular	$\sqrt{3}$	1	1.00 × 10 ⁻²	
Short-term stability of R_2	Rectangular	$\sqrt{3}$	1	1.00 × 10 ⁻²	
Short-term stability of R_3	Rectangular	$\sqrt{3}$	1	1.00 × 10 ⁻²	
Temperature coefficient of R_I	Rectangular	$\sqrt{3}$	1	2.31 × 10 ⁻³	
Temperature coefficient of R_2	Rectangular	$\sqrt{3}$	1	2.31 × 10 ⁻³	
Temperature coefficient of R_3	Rectangular	$\sqrt{3}$	1	2.31 × 10 ⁻³	
Power of R_I	Rectangular	$\sqrt{3}$	1	1.44×10^{-3}	
Power of R_2	Rectangular	$\sqrt{3}$	1	1.44×10^{-3}	
Power of R_3	Rectangular	$\sqrt{3}$	1	1.44×10^{-3}	
Uniformity of bath	Rectangular	$\sqrt{3}$	1	1.10 × 10 ⁻²	
Combined standard uncertainty (<i>u</i> _c), coverage factor <i>k</i> =1				0.025	

Table 3 Uncertainty values for calculated from R-group method and Exchanging method.

Resistance	R-group	Exchanging				
1 Ω:1 Ω						
Combined standard uncertainty, $k=1$ ($\mu\Omega/\Omega$)	0.025	0.033				
100 Ω:100 Ω						
Combined standard uncertainty, $k=1$ ($\mu\Omega/\Omega$)	0.022	0.031				
10 kΩ:10 kΩ						
Combined standard uncertainty, $k=1$ ($\mu\Omega/\Omega$)	0.023	0.042				

To evaluate the potential of the R-group method in the validation and calibration of DCC bridges, the E_n ratio was calculated [7]. The comparison of the E_n ratio values obtained from the R-group method and the Exchanging method in the 1:1 resistance ratio measurement of 1 Ω , 100 Ω , and 10 k Ω using the combined standard uncertainty at the confidence level k=1 to reduce the

วันที่ 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จังหวัดเชียงใหม่

influence of unnecessary uncertainty in comparison [8–9], as shown in Equation (10).

$$E_n = \frac{\left| \bar{X}_1 - \bar{X}_2 \right|}{\sqrt{u_1^2 + u_2^2}} \tag{10}$$

Where:

 \bar{X}_1 is Value measured by the R-group method

 \bar{X}_{2} is Value measured by the Exchanging method

 u_1 is Measurement uncertainty of the R-group method

 u_2 is Measurement uncertainty of the Exchanging method

The $E_{\rm n}$ ratio values obtained from the R-group method in all ranges are lower than 1 when compared with the Exchanging method and with the uncertainty values of each method. Therefore, it can be concluded that the R-group method can be used for verification and as a guideline for calibration of the DCC bridge appropriately, as shown in Table 4.

Table 4 E_n ratio values in the comparison of measurement methods.

Resistance	Average ο (μ!	$E_{\rm n}$ ratio	
	R-group	Exchanging	
1 Ω:1 Ω	-0.082	-0.088	0.22
100 Ω:100 Ω	-0.032	-0.034	0.06
10 kΩ:10 kΩ	0.061	0.086	0.52

4. Conclusions

This study displays the effectiveness of the R-group method, employing three CCC bridge—calibrated standard resistors, for verifying the ratio error of a commercial DCC bridge model 6010C at the 1:1 ratios of 1 Ω , 100 Ω , and 10 k Ω resistors. The method achieved ratio error values of – 0.082 $\mu\Omega/\Omega$, – 0.032 $\mu\Omega/\Omega$, and 0.061 $\mu\Omega/\Omega$, respectively, which agree with those obtained using the conventional Exchanging method. The combined standard uncertainty (k=1) was found to be approximately 0.022 $\mu\Omega/\Omega$ to 0.025 $\mu\Omega/\Omega$, lower than that of the Exchanging method, thereby improving both the accuracy and stability of the measurement. The calculated En ratios were consistently less than one, confirming the reliability and consistency of the method.

The use of long-term stable standard resistors, calibrated to Quantum Hall standards with uncertainties below 20 ppb, significantly contributes to the confidence in measurement results and the verification process. The findings highlight that employing more than two standard resistors not only mitigates the influence of individual resistor deviations but also enhances measurement stability. Consequently, the proposed method offers a practical and precise alternative for DCC bridge verification in laboratories without access to a CCC bridge. Nonetheless, confirmation against a reliable reference instrument remains essential to ensure the highest accuracy and traceability.

5. Acknowledgments

The authors acknowledge the Electrical Resistance Laboratory, Primary Electrical, Time and Frequency

Standard Group, Electrical Metrology Department, National Institute of Metrology (Thailand) and Department of Electrical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University for supporting instruments and facilities measurement and giving suggestions for the measurement techniques.

References

- [1] M. P. MacMartin and N. L. Kusters, "A Direct-Current-Comparator Ratio Bridge for Four-Terminal Resistance Measurements," *IEEE Transactions on Instrumentation and Measurement*, vol. 15, no. 4, pp. 212-220, 1966.
- [2] R. S. M. Ali and M. Raouf, "Verification of the Main Ratios of the 6010C Automatic Bridge Used for Resistance Measurement," *Mapan - Journal of Metrology Society of India*, vol. 34, pp. 49-53, 2018.
- [3] M. C. da Silva, H. R. Carvalho, and V. C. de Oliveira, "Stability evaluation of 1 Ω and 10 $k\Omega$ standard resistors using a step-down method," *Acta IMEKO*, vol. 14, no. 2, pp. 1–6, 2025.
- [4] M. Marzano, C. Cassiago, V. D'Elia, E. Gasparotto, and L. Callegaro, "On the calibration of DC resistance ratio bridges," *Measurement*, vol. 223, 2023.
- [5] D. Brown, A. Wachowicz and S. Huang, "The enhanced performance of the DCC current comparator using AccuBridge® technology," 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa, Canada, 2016, pp. 1-2.
- [6] Measurements International Limited, "AccuBridgeTM 6010C Automated Primary Resistance Bridge," Product Data Sheet, Form MI 66, Rev. 6, 2010.
- [7] ISO/IEC, "Conformity assessment General requirements for the competence of proficiency testing providers," *ISO/IEC 17043*, 2nd ed., 2023.
- [8] United Kingdom Accreditation Service, "M3003: The Expression of Uncertainty and Confidence in Measurement," *UKAS*, 3rd ed., 2012.
- [9] European co-operation for Accreditation (EA), "EA-4/02 M: 2013. Evaluation of the Uncertainty of Measurement in Calibration," EA European accreditation, 2013.
- [10] P. Utsaha, J. Tanarom and P. Gomasang. Scaling Error Verification of DCC Bridges 6010C and 6020Q. 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Khon Kaen, Thailand, 2024.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า ครั้งที่ 48

The 48th Electrical Engineering Conference (EECON-48)

Alisa Dawroyram: Undergraduate student in Electrical and Computer Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University. Research interest: electrical measurement.

Jutarat Tanarom, Ph. D.: Metrologist in the Electrical Metrology Department, National Institute of Metrology, Thailand. Research interest: Electrical metrology and Quantum measurement

Ploybussara Gomasang, Ph. D.: Lecture/Researcher in Department of Electrical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University. Research interest: electrical measurement and instrument,