
การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

*Corresponding Author

Atipong Suriya, atipong.s@ubu.ac.th

Real-Time Analysis S-Parameters via Remote Control of a Vector Network Analyzer Using

API Integration

Artit Rittiplang1, Nakrop Jinaporn 1, and Atipong Suriya1

1Department of Electrical Engineering, Faculty of Engineering, Ubon Ratchathani University, Thailand,

artit.r@ubu.ac.th, nakrop.j@ubu.ac.th, atipong.s@ubu.ac.th

Abstract

 Nowadays, programming commands are widely used in

automation control instruments for real-time data

acquisition in automatic test equipment. This control is

typically implemented using SCPI, which simplifies code

writing, but usually requires the vendor’s software to be

running. Therefore, our focus is on using an API that

enables direct control of the instrument without the need

to launch vendor software. In this demonstration, the

PicoVNA 106 is used as the instrument, and we develop

the API protocol using the Python programming language

to integrate the system independently of vendor or

commercial software. This approach enhances flexibility

and accessibility for educational and research

applications, supporting hands-on learning in

programming, automation, and real-time measurement

systems. Furthermore, it can significantly reduce costs

associated with commercial software packages.

Keywords: Automation Control, Programming

Command, Vector Network Analyzer, S-parameters, API,

SCPI.

1. Introduction
In the field of electrical and electronic engineering,

automated test equipment plays a crucial role in

measurement, calibration, and validation processes. As

the demand for faster and more reliable testing grows,

real-time instrument control has become increasingly

important [1]-[7]. Traditional methods often rely on

manual operation or proprietary software provided by

instrument manufacturers, which can limit flexibility and

hinder integration into custom or automated systems.

These challenges have become a key topic in

engineering education, where students are increasingly

expected to learn how to control measurement

instruments through application programming interfaces

(API). Unlike Standard Commands for Programmable

Instruments (SCPI), which often requires the

manufacturer’s software to be running during

communication [8]-[9]. API can provide more direct and

lightweight access to device functions without launching

external software. API and SCPI processes are shown in

Fig. 1.

 (a) (b)

Fig 1. Instrument control by programing (a) API protocol, (b) SCPI

protocol

As shown in Fig.1(b), the SCPI protocol requires the

vendor's software to be running in order to manage SCPI

commands for hardware control. Typically, the vendor’s

software is integrated into the device's display interface,

such as the screen on an oscilloscope, and the front panel

of a DC power supply and multimeter.

In this work, we demonstrate an API-based approach

, as shown in Fig.1(a) with Python for instrument control

using the PicoVNA106 vector network analyzer (VNA).

A custom Python API is developed to interface with the

VNA, allowing users to configure measurements and

acquire S-parameters and real-time response, without

relying on the official PicoVNA software [9]-[10].

This approach offers a more flexible and scalable

solution for both academic and industrial applications. It

is particularly beneficial in educational environments,

where students gain practical experience in real-time

instrumentation control, data acquisition, and the

integration of measurement systems into broader

automation workflows. Additionally, it helps reduce costs

associated with commercial software licenses such as

MATLAB and LabVIEW [5]-[7], by promoting the use of

open-source and custom-built alternatives

2. The Design of API on Windows OS
This design is currently compatible with Python

versions 3.8 to 3.11. Firstly, it is necessary to download

the appropriate set of files from the PicoVNA5 SDK

v5.3.1 [10] corresponding to the specific version of

Python being used. In this demonstration it is based on

API

Hardware

SCPI

Vendor Software

coding, script file

Hardware

Serial port

(USB, GPIB, LAN)

coding, script file

Serial port

(USB, GPIB, LAN)

mailto:atipong.s@ubu.ac.th
mailto:artit.r@ubu.ac.th
mailto:nakrop.j@ubu.ac.th
mailto:atipong.s@ubu.ac.th

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Python 3.11 version and Windows 11. Those PicoVNA5

SDK files should include and place in the same directory

as the Python script (.py file) as shown in Fig.2 to ensure

correct operation and successful integration with the

PicoVNA API.

Fig 2. Picovna files and Python script must be in the same folder.

Python must install the vna package (pip install vna)
for interfacing and communicating. Then, we have two

typical program structures for considering [9].

1) Synchronous mode: this mode waits for the entire

measurement sweep to complete before processing any

measurements.
2) Asynchronous mode: it is processing

measurements point-by-point without waiting for the

entire sweep to complete.

In this design, we use asynchronous mode for faster

real-time measurements compared to synchronous mode,

which is a bit more difficult to implement, but it is

worthwhile for real-time applications in industrial or

medical settings. That mode has a flowchart as shown in

Fig.3. Then, we will design the real-time displaying for S-

parameters and time-domain of responses of low pass

filter, band pass filter.

Table 1 Required Python packages

Library Purpose

tkinter Standard Python GUI library

tkinter.ttk buttons, labels, entries

threading Enables background

measurement without

freezing the GUI.

time optional delays

matplotlib.pyplot Used to create plots
matplotlib.backends

.backend_tkagg

.FigureCanvasTkAgg

Integrates matplotlib plots

into tkinter windows.

PIL.Image Loads and displays image

(e.g., our university logo) in

the GUI.

vna Provides access to the VNA

device and related functions

Fig 3. Asynchronous mode for real-time measurements

Table 1-2 shows Python packages and functions used

in this work

A folder
connect to instrument

vna.openAny

vna.open

Calibration

Configure measurement

vna.MeasurementConfiguration.MeasurementConfiguration

vna.MeasurementConfiguration.addUniformFrequencySweep

Start measurement (non-blocking)

vna.Device.startMeasurement

Retrieve measurement point (blocking)

vna.ActiveSweep.getNextPoint

Application-specific code (we design)

 vna.ActiveSweep.hasMorePoints

?

 Measure

again?

yes

yes

no

no

Start

End

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig 4. the real-time GUI of S11 S21 (left side) and time domain S21
(right side)

Table2 Required VNA functions

Function Role

vna.Device.openAny() connects to VNA

device.

vna.MeasurementConfiguration() configuration for

frequency sweep

vna.toLogMag(pt.s11 / pt.s21) Converts complex

S-parameter to log

magnitude (dB)

vna.transform(options,

parameter, measurements)

Converts S-

parameter to time-

domain

vna.TimeDomainOptions() Sets time-domain

transform options

(e.g., HANNING

window)

We have adopted Python as our software platform,

starting and building upon the example codes provided in

the official datasheet repository [10]. Finally, the project

has been completed, with the application successfully

displaying S11, S21, and time-domain results in Fig4.

3. Experimental Setup
The PicoVNA106 instrument in Fig5(b) is firstly

connected to a bandpass mounted on a circuit toolkit and

a laptop in Fig5(a). When the application is executed, a

real-time graphical user interface (GUI) is displayed, as

shown in Fig 4. Firstly, we set the start frequency to 300

kHz and the stop frequency to 6 GHz, with 2001 sampling

points, by entering the values on the screen. Secondly, we

then perform calibration using short, open, load, and

through standards from the circuit toolkit in Fig5(c) to

ensure accurate S11 and S21 data.

In the left plot of Fig4, the S11 parameter is

represented by a dotted line, while the S21 parameter is

shown as a solid line. The right plot illustrates the time-

domain response of the S21 parameter. For the bandpass

filter measurement in Fig. 6 (left), the solid line shows a

passband between 150 MHz and 250 MHz, with an

(a)

(b) (c)

Fig 5. (a) real experiment (b) PicoVNA106 (c) circuit toolkit.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

insertion loss of approximately –5 dB. In the time-domain

plot of S21 (right), the response is obtained by applying

an inverse Fourier transform (IFFT), resulting in a short

pulse. This indicates that the frequency content is

concentrated within the 150 MHz to 250 MHz range.

These results are consistent with the datasheet of the

circuit training kit [11].

Fig 6. the measurement range of bandpass.

For the low-pass filter in Fig. 7, the solid line (left) shows

a passband from DC to approximately 260 MHz. In the

time-domain response (right), obtained via inverse

Fourier transform (IFFT), low-frequency signals pass

through while high-frequency components are attenuated.

This demonstrates the typical behavior of a low-pass

filter, where the response resembles a step voltage.

Fig 7. the measurement range of band-pass filter.

This software can be extended and further developed

for suitable applications using Python coding. In

comparison, other commercial software is ready to use for

reading significant parameters, but it is not real time if

data is imported via a flash drive for analysis. Therefore,

this work is valuable for fostering open, customizable, and

cost-effective research solutions in real-time medical

measurements, such as tissue dielectric analysis and

electrochemical sensors.

4. Conclusions
This paper presents the development of API software

using Python for real-time graphical visualization of S11,

S21, and time-domain analysis. While the approach itself

is not novel, it offers a practical and accessible foundation

for developers seeking to extend its capabilities to other

applications, such as dielectric material characterization

or biomedical tissue measurement, without the need for

proprietary vendor software.

References

[1] H. C. Georgiana, B. Ana-Maria, and L. Ioan,

“Automatic testing of automotive electronic modules

for cranking conditions,” 2018 International

Symposium on Electronics and Telecommunications

(ISETC), Timisoara, Romania, 2018, pp. 1–4, doi:

10.1109/ISETC.2018.8583856.

[2] C.-C. Chang, Y.-T. Chiu, and C.-C. Wei, “Design

instrument control software interface based on SCPI

commands to reduce development time,” 2021 7th

International Conference on Applied System

Innovation (ICASI), Chiayi, Taiwan, 2021, pp. 97–

100, doi: 10.1109/ICASI52993.2021.9568467.

[3] A. S. Rao et al., “Development of Python-based

applications for virtual instrument control using

PyQt5, PyVISA, and SCPI protocol,” 2024 Second

International Conference on Emerging Trends in

Information Technology and Engineering

(ICETITE), Vellore, India, 2024, pp. 1–7, doi:

10.1109/ic-ETITE58242.2024.10493634.

[4] J. L. Schmalzel and R. Trafford, “SCPI: IoT and the

déjà vu of instrument control,” 2021 IEEE Sensors

Applications Symposium (SAS), Sundsvall, Sweden,

2021, pp. 1–6, doi:

10.1109/SAS51076.2021.9530061.

[5] F. Zaiming, Z. Zhixiang, Z. Yijiu, and M. Min, “The

merging design method of instrument software based

on the SCPI command set,” 2017 13th IEEE

International Conference on Electronic Measurement

& Instruments (ICEMI), Yangzhou, China, 2017, pp.

44–48, doi: 10.1109/ICEMI.2017.8265709.

[6] B. A. Balaji, S. Sasikumar, and K. Ramesh, “SCPI-

based integrated test and measurement environment

using LabVIEW,” IOP Conference Series: Materials

Science and Engineering, vol. 1045, no. 1, p. 012036,

2021, doi: 10.1088/1757-899X/1045/1/012036.

[7] W. Cai, B. Wang, and S. Zhang, “Remote control and

data acquisition of multiple oscilloscopes using

LabVIEW,” 2017 International Conference on

Computer Technology, Electronics and

Communication (ICCTEC), Dalian, China, 2017, pp.

920–924, doi: 10.1109/ICCTEC.2017.00203.

[8] Pico Technology Ltd., “PicoVNA Vector Network

Analyser (PicoVNA 5) user’s guide,” [Online].

Available:

https://www.picotech.com/download/manuals/picov

na-vector-network-analyser-picovna-5-users-

guide.pdf. [Accessed: Jul. 7, 2025].

[9] Pico Technology Ltd., “PicoVNA Vector Network

Analyzer programmer’s guide,” [Online]. Available:

https://www.picotech.com/download/manuals/picov

na-vector-network-analyzer-programmers-guide.pdf.

[Accessed: Jul. 7, 2025].

[10] Pico Technology, “picovna5-examples: Example

code for PicoVNA 5 SDK,” GitHub repository, 2023.

[Online]. Available:

https://github.com/picotech/picovna5-examples.

[11] Pico Technology Ltd., “Network Metrology Training

Kit user’s guide (PQ186),” [Online]. Available:

https://www.picotech.com/download/manuals/netwo

rk-metrology-training-kit-users-guide.pdf.

[Accessed: Jul. 12, 2025].

https://www.picotech.com/download/manuals/picovna-vector-network-analyser-picovna-5-users-guide.pdf
https://www.picotech.com/download/manuals/picovna-vector-network-analyser-picovna-5-users-guide.pdf
https://www.picotech.com/download/manuals/picovna-vector-network-analyser-picovna-5-users-guide.pdf
https://www.picotech.com/download/manuals/picovna-vector-network-analyzer-programmers-guide.pdf
https://www.picotech.com/download/manuals/picovna-vector-network-analyzer-programmers-guide.pdf
https://github.com/picotech/picovna5-examples
https://www.picotech.com/download/manuals/network-metrology-training-kit-users-guide.pdf
https://www.picotech.com/download/manuals/network-metrology-training-kit-users-guide.pdf

