
การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

*Corresponding Author

A Sliding Mode Control Approach to Hybrid Manual-Automatic Velocity Regulation for a

Raspberry Pi-Based Remote Vehicle

Vorrachit Cheakpimai1, Nattavit Piamvilai*1, Suriyotai Supanyapong1,

Nattaphat Thanavittayapaisan1, and Polatip Thongpet1

1*Department of Electrical Engineering Technology, College of Industrial Technology,

King Mongkut's University of Technology North Bangkok,

E-mail: nattavit.p@cit.kmutnb.ac.th*

Abstract
This paper presents the design and implementation of

a remote-controlled vehicle system that combines manual

input with autonomous control using a Sliding Mode

Control (SMC) algorithm executed on a Raspberry Pi 5

platform. The proposed system integrates throttle,

steering, and gear inputs from the user with real-time

closed-loop velocity regulation. The control architecture

employs encoder-based feedback and layered

communication between a Raspberry Pi 5 and Raspberry

Pi Pico W, enabling low-latency PWM signal generation

and stable actuation. To evaluate system performance,

experiments were conducted on a custom-built chassis

dynamometer under both no-load and mechanical full

load conditions across multiple gear levels. The results

demonstrate the SMC algorithm’s ability to maintain

consistent tracking accuracy, reject disturbances, and

bound duty cycle variations within a narrow range. These

findings validate the feasibility of applying robust control

strategies on low-cost embedded platforms for hybrid

manual–automatic vehicular systems.

Keywords: Sliding Mode Control, Raspberry Pi 5,

Remote Vehicle, Embedded Control, PWM, Velocity

Regulation, Encoder Feedback, Raspberry Pi Pico W

1. Introduction
Reliable control in vehicular systems under uncertain

mechanical loads and external disturbances remains a

core challenge, particularly in semi-manual settings

where users operate the throttle, steering, and gear

shifting. Maintaining consistent performance under such

hybrid input conditions demands real-time, robust control

strategies. a promising approach is SMC, known for its

robustness against model uncertainties and external

perturbations. By driving system states toward a sliding

surface and maintaining them there, SMC achieves fast

convergence and strong disturbance rejection. As control

platforms integrate manual input with automation, SMC

ensures accurate and stable closed-loop control—even

with active user interaction.

This paper presents the design and implementation of

an SMC-based control system applied to a four-wheel

model vehicle, incorporating a discrete gear-shifting

mechanism. While users manually operate input devices,

the SMC algorithm autonomously adjusts motor speed

through real-time PWM duty cycle modulation to

maintain target velocity.

System validation was performed using a custom-

built chassis dynamometer capable of simulating realistic

road conditions. Experiments were conducted at three

discrete gear levels—Gear 1 (15 km/h), Gear 2 (30 km/h),

and Gear 3 (40 km/h)—under both no-load and load

scenarios. Key performance metrics such as motor current

and PWM duty cycle were recorded. Results confirm that

the proposed control scheme effectively maintains

stability and tracking performance under hybrid manual–

automatic operation.

2. Methodology

2.1 Overview of the Remote-Controlled

Vehicle System with Sliding Mode Control
Figure 1 provides an overview of the system

architecture, illustrating the communication and control

flow among key modules, including the user interface,

central server, Raspberry Pi 5, Raspberry Pi Pico W,

encoder, and actuators. It shows how user input is

captured and propagated through each layer to enable

real-time actuation via closed-loop feedback, ensuring

responsiveness and accuracy.

The vehicle operates under a semi-manual

framework, where users control the steering wheel,

throttle, and gear level. At the same time, the embedded

controller computes control actions based on sensor

feedback and real-time processing. Each module plays a

specific role, the user interface captures input, the server

manages communication, the Pi 5 performs computation,

the Pico W executes actuation, and the encoder supplies

velocity feedback; all modules are interconnected via

network and serial communication for synchronized

operation.

The process begins with a USB-connected steering

wheel on a local computer, which transmits x, y positions

and gear selections to the server over a dedicated socket

protocol [3]. The server, using a static IP, forwards this

data to the Pi 5 via a lightweight socket interface. The Pi 5

calculates speed from encoder pulses and communicates

with the Pico W over UART. It then runs the SMC

algorithm to compute speed control, steering angle, and

PWM duty cycle, which are sent to the Pico W for final

actuation. The Pico W sends PWM signals to the DC

motor and angle commands to the servo, completing the

control loop. This modular setup ensures reliable

performance and supports flexible testing of control

strategies

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig. 1. Overview of the proposed remote-controlled vehicle system architecture, illustrating the data flow from the user's steering wheel, through a

central server, to the Raspberry Pi 5 and Pico W for SMC-based motor control.

2.2 Sliding Mode Control (SMC) Methodology
 SMC is a nonlinear control strategy that offers

robustness against model uncertainties and external

disturbances [1]. It is particularly effective for regulating

dynamic systems such as mobile vehicles. This study

implements SMC on a Raspberry Pi 5 to control vehicle

speed under varying load conditions [4-5], using encoder

feedback to obtain real-time velocity measurements. The

SMC framework consists of three phases sliding surface

definition, reaching phase, and sliding phase. The primary

control objective is to drive the system state such that the

sliding surface s converges to zero and remains there, i.e.,

() 0s t = , indicating that the system has reached the desired

dynamic behavior. As shown in Eq. (1).

() () ()s t e t e t= + (1)

where

()s t = sliding surface at time t

()e t = tracking error at time t

()e t = derivative of the tracking error

 = A positive constant that defines the slope of the

sliding surface

During the reaching phase, the control input is

designed to drive the system state toward the sliding

surface by applying a discontinuous control law, as shown

in Eq. (2).

This phase is critical to ensure that the system enters

the desired sliding mode in finite time, regardless of initial

conditions or external disturbances. The magnitude of the

control gain plays a key role in determining how quickly

the trajectory converges to the sliding surface, and

improper tuning may lead to excessive control effort or

slow convergence.

smc ())(u K sgn s t= −  (2)

where

smcu = The corrective PWM signal from the SMC

controller

K = positive gain that dictates the intensity of the

correction

())(sgn s t = is the signum function, which returns +1, −1,

or 0 based on the sign of ()s t

Once the system reaches the sliding surface, it enters

the sliding phase, where system dynamics are constrained

to follow the linear behavior of the surface. This phase

provides SMC with robustness, enabling effective

rejection of disturbances and model uncertainties.

However, the discontinuous control law may cause

chattering—high-frequency switching that can degrade

actuator performance [2], [6-7]. While this study employs

the basic signum function, future work may introduce a

boundary layer or saturation function to reduce chattering.

The resulting control signal is then used to compute a

PWM duty cycle transmitted to the motor driver, enabling

real-time closed-loop speed control in the vehicle.

2.3 Execution Flowchart of the SMC-Based

Control System

Figure 2 shows the flowchart of the SMC-based

control system implemented on Raspberry Pi 5 and

Raspberry Pi Pico W. The process starts with input data

from a central server, including steering wheel positions

x, y and gear selection. At the same time, encoder signals

from a brushless DC motor are captured to compute the

vehicle’s real-time speed.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig. 2. System flowchart of the SMC-based motor control architecture, showing data acquisition, feedback processing, and PWM signal generation

The system first checks whether the SMC activation

condition is met. This condition is triggered when the y-

axis throttle value reaches 1.0, If the condition is not

satisfied, the cumulative control error is reset to zero and

the system operates in open-loop mode. Otherwise, SMC

is activated.

The controller begins by calculating the tracking

error ()e t as the difference between the target speed
targetv

(set by the user via gear and throttle) and the actual speed

actualv as shown in Eq. (3).

target actual()e t v v= − (3)

where

()e t = is the tracking error at time t

targetv = the desired speed of the vehicle

actualv = the current speed measured in real time

Next, the derivative of the tracking error ()e t is

computed to capture the rate of change of the error, as

shown in Eq. (4).

() ()

()
e t e t t

e t
t

− − 
=


 (4)

where

()e t = is the tracking error at time t

()e t = derivative of the tracking error

t = Time elapsed since the previous measurement

These two values, ()e t and ()e t , are used to form the

sliding surface ()s t , which governs the switching logic in

SMC and is defined as shown in Eq. (1). Based on this

surface, the system then applies the SMC control law to

compute the corrective control signal
smcu , as shown in

Eq. (2). This signal ensures robust and stable convergence

toward the condition () 0s t = , even in the presence of

external disturbances. Finally, the generated
smcu is

combined with a nominal PWM value from the open-loop

path open_loopu to produce the final control output
finalu , as

shown in Eq. (5),

final open_loop smcu u u= + (5)

where

finalu = the composite PWM signal that incorporates

both open-loop and feedback-based control

open_loopu = the nominal PWM value

smcu = the corrective PWM signal from the SMC

controller

Before transmission,
finalu it is constrained

within safe operating bounds and sent via serial

communication to the Pico W.

The Pico W forwards the bounded PWM to the motor

driver and applies necessary steering corrections. An ESC

is integrated to improve dynamic response, enhance speed

tracking, and reduce overshooting to compute the real-

time velocity used in actualv , the system utilizes feedback

from an optical encoder attached to the motor shaft.

The number of pulses pulse_count is measured within a

defined sampling interval t , allowing the calculation of

pulse frequency in hertz, as shown in Eq. (6).

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

pulse_count

pulse_per_sec
t

=


 (6)

where

pulse_per_sec = the number of pulses per second (Hz)

pulse_count = the number of pulses counted during time

interval

t = sampling time in seconds

given the number of pulses per wheel revolution

pulses_per_rev and the wheel diameter wheel_diameter the

linear speed in meters per second is then calculated, as

shown in Eq. (7).

mps

pulse_per _ sec
speed heel_diameter

pulses_per_rev
w=   (7)

where

mpsspeed = the speed in meters per second

pulse_per_sec = the number of pulses per second (Hz)

pulses_per_ref = the number of pulses per full wheel

revolution

wheel_diameter = the diameter of the wheel in meters

To express this result in kilometers per hour, value is

converted using the factor 3.6, as shown in Eq. (8).

km/h mpsspeed speed 3.6=  (8)

where

km/hspeed = the converted speed in kilometers per hour

mpsspeed = the speed in meters per second

This computed speed value is then used as the

feedback input to the SMC loop on the Raspberry Pi 5, by

integrating this real-time velocity measurement with the

control law described previously in Eqs. (1)–(5), the

system can continuously adjust control efforts to maintain

target performance even under dynamic load conditions

and external disturbances.

Before transmission, the final PWM output is

constrained within safe operating bounds to prevent

overdriving the actuators and is sent via serial

communication to the Pico W, which forwards the

bounded PWM signal to the motor driver and applies

steering corrections through the servo motor as needed.

An ESC mechanism is also integrated into the system to

improve dynamic response, enhance speed tracking

precision, and reduce overshooting during rapid

transitions. Finally, encoder feedback is continuously

routed back to the Pi 5 in real time, completing the high-

frequency closed-loop control cycle and ensuring stability

throughout operation.

3. Implementation

3.1 Circuit Diagram and Hardware

Implementation of the SMC-Based Control

System
The complete hardware architecture of the proposed

SMC-based control system is illustrated in Fig. 3, which

depicts the interaction between the power supply,

processing unit, actuator interface, and feedback

components. This modular design separates high-level

computation from time-sensitive actuation, enhancing

system reliability, maintainability, and scalability for

embedded vehicular control applications.

At the system's core is a 12 V lithium-ion battery

(15,000 mAh, 3 A continuous discharge), which serves as

the primary power source. It delivers energy to

subsystems through two dedicated buck converters,

ensuring appropriate voltage levels and minimizing the

risk of overvoltage or current surges. The first converter

steps the voltage down to 5 V, supplying power to the

Raspberry Pi 5 and the servo motor, both sensitive to

fluctuations. The second converter provides a stable 7 V

to the ESC, which controls the brushless DC (BLDC)

motor. This separation of power domains reduces

interference between digital and analogue sections,

improving overall stability and safety.

The Raspberry Pi 5 functions as the central control

unit. It runs the SMC algorithm, processes encoder

signals, and communicates via UART (RX-TX-GND)

with a secondary microcontroller—the Raspberry Pi

Pico W. To prevent power rail noise, the same 5 V supply

does not power the Pico W but instead draws power

through the Pi 5's USB port, improving signal integrity

and simplifying wiring.

After computing the PWM duty cycle based on

control laws and real-time velocity feedback, the Pi 5

sends commands to the Pico W. Acting as the low-level

actuator controller, the Pico W generates two outputs: a

PWM signal to the ESC for motor speed control, and a

servo angle command via GPIO 14. The servo motor

shares power and ground with the Pi 5 to ensure

synchronized and noise-free operation.

The ESC, powered by 7 V, delivers three-phase

outputs (A, B, and C) to the BLDC motor. In parallel,

three Hall-effect sensors (Hall A, B, and C) provide rotor

position and velocity feedback to the Pi 5, enabling

accurate speed estimation and closed-loop control. This

feedback ensures the control algorithm adapts precisely to

real-time operating conditions.

Overall, the proposed architecture supports robust,

real-time embedded control for hybrid manual–automatic

vehicle systems using cost-effective and widely available

components. The separation of power, computation, and

actuation layers enhances system modularity, safety, and

flexibility, making the platform well-suited for

experimental validation of advanced control strategies.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig. 3. Circuit diagram of the SMC-based vehicle control system, showing power distribution, communication links, and signal pathways between
the main controller, actuator interface, and motor driver.

4. Results and Discussion

4.1 Performance Evaluation of the SMC-Based

Control System
To evaluate the performance of the proposed SMC-

based control architecture, a series of experiments was

conducted using a custom-designed chassis dynamometer

capable of replicating realistic road load conditions. Tests

were carried out at three discrete gear settings—Gear 1

(15 km/h), Gear 2 (30 km/h), and Gear 3 (40 km/h)—

under two test conditions: no-load, where the vehicle

wheels rotate freely without contact with the ground, and

load, where the vehicle is placed on the dynamometer

with applied mechanical resistance to simulate real

driving conditions.

The primary performance metrics recorded were the

average PWM duty cycle (%) and current draw (A),

representing control effort and energy consumption,

respectively. Fig. 4. as shows in the box plot comparing

current draw across the three gears under both no-load and

load conditions. It is evident that the current consumption

remains low and highly stable in all gear levels under no-

load. In contrast, the load condition significantly

increases, especially in higher gears. Notably, Gear 3

under load reaches peak current values exceeding 3.3 A,

indicating increased torque demand and mechanical

stress.
Fig. 5. as shown in the box plot for the PWM duty

cycle. Despite the added load and speed variation, the

PWM values remain tightly bound across all gears,

demonstrating the SMC controller’s ability to preserve

control stability, reject disturbances, and prevent

overshooting.

Fig. 4. Box plot of motor current (A) across three gear levels under

load and no-load conditions. Load simulates driving resistance; no-load
allows free wheel rotation.

Fig. 5. Box plot of PWM duty cycle across gear levels. SMC

maintains tight bounds under load and no-load conditions.

Under the no-load condition shown in Table 1, the

system maintained low and consistent duty cycle values

with minimal current draw. For instance, Gear 1 recorded

an average duty cycle of 8.010 % and a current of only

0.011 A, whereas Gear 3 slightly increased to 0.267 A due

to higher target speed. The small variation in duty cycle

reflects precise control performance when external torque

is negligible.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Table 1. Experimental results under no-load condition. The SMC
performance demonstrates stable duty cycles with minimal current draw

across all gears.
No load

Gear Avg Duty Cycle (%) Avg Current(A)

1 8.010 % 0.011 A

2 8.374 % 0.159 A

3 8.646 % 0.267 A

 Duty Cycle (%) Current(A)

Gear Max Min Max Min

1 8.133 % 7.998 % 0.025 A 0.006 A

2 8.374 % 8.374 % 0.172 A 0.146 A

3 8.824 % 8.624 % 0.149 A 0.211 A

Under the load condition shown in Table 2, the

system required significantly more control effort. Gear 3

recorded the highest average current of 2.869 A, along

with a duty cycle of 9.985 %. However, even in this

scenario, the duty cycle remained within a narrow

operating range (9.999 % max, 9.849 % min), confirming

the robustness of the SMC algorithm in rejecting

disturbances and maintaining target velocity.

Table 2. Experimental results under load condition. Increased current
reflects higher torque demand, while duty cycles remain tightly

bounded, confirming control stability.

 Load

Gear Avg Duty Cycle (%) Avg Current(A)

1 8.279 % 0.793 A

2 9.178 % 2.077 A

3 9.985 % 2.869 A

 Duty Cycle (%) Current(A)

Gear Max Min Max Min

1 9 % 7.998 % 1.322 A 0.228 A

2 9.799 % 8.574 % 3.692 A 1.390 A

3 9.999 % 9.849 % 3.334 A 2.185 A

These findings confirm the effectiveness of the SMC

scheme in regulating vehicle speed under dynamic and

resistive environments. The controller compensates for

load-induced variations while maintaining bounded

actuation, which helps reduce system stress and enhances

long-term reliability. Performance consistency across

gear levels supports the suitability of this control approach

in hybrid manual–automatic vehicle systems requiring

real-time feedback control.

5. Conclusion
This paper presented the design and implementation

of a robust SMC-based control system for a remote-

controlled vehicle using Raspberry Pi 5 and Pico W. The

system combines manual throttle, steering, and gear input

with automated speed regulation through a real-time

feedback loop driven by encoder data. To ensure precision

and operational stability, a structured and modular

hardware architecture—featuring independent power

regulation, UART-based communication, and closed-

loop motor control—was developed.

Experimental validation was done using a chassis

dynamometer under no-load and loaded conditions. The

results confirmed that the SMC algorithm effectively

maintained target speeds while compensating for

mechanical disturbances. The PWM duty cycles remained

tightly bound, and current responses were stable across all

gear levels, demonstrating robustness and control

accuracy.

Overall, the findings demonstrate the feasibility of

deploying sliding mode control on low-cost embedded

platforms for hybrid manual–automatic vehicle systems.

As future work, the system can be enhanced by

incorporating wireless control input, adaptive gain tuning,

and replacing the basic signum function with a boundary

layer or saturation function to reduce chattering. These

improvements could increase energy efficiency and

adaptability under more complex or time-varying load

conditions.

Reference
[1] L. G. Wu, J. Liu, S. Vázquez, and S. K. Mazumder,

“Sliding mode control in power converters and

drives: A review,” *IEEE/CAA J. Automatica

Sinica*, vol. 9, no. 3, pp. 392–406, Mar. 2022.

[2] X. Xiong, S. Kamal, and S. Jin, “Adaptive gains to

super‑twisting technique for sliding mode design,”

presented at *IEEE Conference* (arXiv preprint),

May 2018.

[3] H. Yajima and K. Takami, “Inter‑Vehicle

Communication Protocol Design for a Yielding

Decision at an Unsignalized Intersection and

Evaluation of the Protocol Using Radio Control

Cars Equipped with Raspberry Pi,” *Computers*,

vol. 8, no. 1, Art. 16, 2019.

[4] X. Wang, “Field oriented sliding mode control of

surface-mounted hybrid electric vehicles under

automotive dynamometer load testing,” Proc. IEEE

Veh. Tech. Conf., 2018.

[5] R. Singh et al., “MRAS-based Integral Sliding

Mode Control of Electric Vehicles under Speed and

Load Torque Fluctuations,” in Proc. IEEE PEDES,

Dec. 2022.

[6] K. Rsetam et al., “GPIO-based continuous sliding

mode control for networked control systems under

communication delays with experiments on servo

motors,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1,

pp. 99–113, Jan. 2025.

[7] T. Nayl, “Design and experimental evaluation of a

novel sliding mode control scheme for articulated

vehicle,” Mechatronics, 2018.

