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Abstract 
This paper presents the design and implementation of 

a remote-controlled vehicle system that combines manual 

input with autonomous control using a Sliding Mode 

Control (SMC) algorithm executed on a Raspberry Pi 5 

platform. The proposed system integrates throttle, 

steering, and gear inputs from the user with real-time 

closed-loop velocity regulation. The control architecture 

employs encoder-based feedback and layered 

communication between a Raspberry Pi 5 and Raspberry 

Pi Pico W, enabling low-latency PWM signal generation 

and stable actuation. To evaluate system performance, 

experiments were conducted on a custom-built chassis 

dynamometer under both no-load and mechanical full 

load conditions across multiple gear levels. The results 

demonstrate the SMC algorithm’s ability to maintain 

consistent tracking accuracy, reject disturbances, and 

bound duty cycle variations within a narrow range. These 

findings validate the feasibility of applying robust control 

strategies on low-cost embedded platforms for hybrid 

manual–automatic vehicular systems. 
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1. Introduction 
Reliable control in vehicular systems under uncertain 

mechanical loads and external disturbances remains a 

core challenge, particularly in semi-manual settings 

where users operate the throttle, steering, and gear 

shifting. Maintaining consistent performance under such 

hybrid input conditions demands real-time, robust control 

strategies. a promising approach is SMC, known for its 

robustness against model uncertainties and external 

perturbations. By driving system states toward a sliding 

surface and maintaining them there, SMC achieves fast 

convergence and strong disturbance rejection. As control 

platforms integrate manual input with automation, SMC 

ensures accurate and stable closed-loop control—even 

with active user interaction. 

This paper presents the design and implementation of 

an SMC-based control system applied to a four-wheel 

model vehicle, incorporating a discrete gear-shifting 

mechanism. While users manually operate input devices, 

the SMC algorithm autonomously adjusts motor speed 

through real-time PWM duty cycle modulation to 

maintain target velocity. 

System validation was performed using a custom-

built chassis dynamometer capable of simulating realistic 

road conditions. Experiments were conducted at three 

discrete gear levels—Gear 1 (15 km/h), Gear 2 (30 km/h), 

and Gear 3 (40 km/h)—under both no-load and load 

scenarios. Key performance metrics such as motor current 

and PWM duty cycle were recorded. Results confirm that 

the proposed control scheme effectively maintains 

stability and tracking performance under hybrid manual–

automatic operation. 

 

2.  Methodology 

2.1  Overview of the Remote-Controlled  

Vehicle System with Sliding Mode Control 
Figure 1 provides an overview of the system 

architecture, illustrating the communication and control 

flow among key modules, including the user interface, 

central server, Raspberry Pi 5, Raspberry Pi Pico W, 

encoder, and actuators. It shows how user input is 

captured and propagated through each layer to enable 

real-time actuation via closed-loop feedback, ensuring 

responsiveness and accuracy. 

The vehicle operates under a semi-manual 

framework, where users control the steering wheel, 

throttle, and gear level. At the same time, the embedded 

controller computes control actions based on sensor 

feedback and real-time processing. Each module plays a 

specific role, the user interface captures input, the server 

manages communication, the Pi 5 performs computation, 

the Pico W executes actuation, and the encoder supplies 

velocity feedback; all modules are interconnected via 

network and serial communication for synchronized 

operation. 

The process begins with a USB-connected steering 

wheel on a local computer, which transmits x, y positions 

and gear selections to the server over a dedicated socket 

protocol [3]. The server, using a static IP, forwards this 

data to the Pi 5 via a lightweight socket interface. The Pi 5 

calculates speed from encoder pulses and communicates 

with the Pico W over UART. It then runs the SMC 

algorithm to compute speed control, steering angle, and 

PWM duty cycle, which are sent to the Pico W for final 

actuation. The Pico W sends PWM signals to the DC 

motor and angle commands to the servo, completing the 

control loop. This modular setup ensures reliable 

performance and supports flexible testing of control 

strategies 
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Fig. 1. Overview of the proposed remote-controlled vehicle system architecture, illustrating the data flow from the user's steering wheel, through a 

central server, to the Raspberry Pi 5 and Pico W for SMC-based motor control. 

 
2.2  Sliding Mode Control (SMC) Methodology 
 SMC is a nonlinear control strategy that offers 

robustness against model uncertainties and external 

disturbances [1]. It is particularly effective for regulating 

dynamic systems such as mobile vehicles. This study 

implements SMC on a Raspberry Pi 5 to control vehicle 

speed under varying load conditions [4-5], using encoder 

feedback to obtain real-time velocity measurements. The 

SMC framework consists of three phases sliding surface 

definition, reaching phase, and sliding phase. The primary 

control objective is to drive the system state such that the 

sliding surface s converges to zero and remains there, i.e., 

( ) 0s t = , indicating that the system has reached the desired 

dynamic behavior. As shown in Eq. (1). 

 
( ) ( ) ( )s t e t e t= +   (1) 

where 

 
( )s t  = sliding surface at time t  

( )e t  = tracking error at time t  

( )e t  = derivative of the tracking error 

  = A positive constant that defines the slope of the 

sliding surface 

During the reaching phase, the control input is 

designed to drive the system state toward the sliding 

surface by applying a discontinuous control law, as shown 

in Eq. (2).  

This phase is critical to ensure that the system enters 

the desired sliding mode in finite time, regardless of initial 

conditions or external disturbances. The magnitude of the 

control gain plays a key role in determining how quickly 

the trajectory converges to the sliding surface, and 

improper tuning may lead to excessive control effort or 

slow convergence. 

 

smc ( ))(u K sgn s t= −    (2) 

where 

 

smcu  = The corrective PWM signal from the SMC 

controller 

K  = positive gain that dictates the intensity of the 

correction 

( ))(sgn s t  = is the signum function, which returns +1, −1, 

or 0 based on the sign of ( )s t  

Once the system reaches the sliding surface, it enters 

the sliding phase, where system dynamics are constrained 

to follow the linear behavior of the surface. This phase 

provides SMC with robustness, enabling effective 

rejection of disturbances and model uncertainties.  

However, the discontinuous control law may cause 

chattering—high-frequency switching that can degrade 

actuator performance [2], [6-7]. While this study employs 

the basic signum function, future work may introduce a 

boundary layer or saturation function to reduce chattering. 

The resulting control signal is then used to compute a 

PWM duty cycle transmitted to the motor driver, enabling 

real-time closed-loop speed control in the vehicle. 

2.3  Execution Flowchart of the SMC-Based  

Control System     

Figure 2 shows the flowchart of the SMC-based 

control system implemented on Raspberry Pi 5 and 

Raspberry Pi Pico W. The process starts with input data 

from a central server, including steering wheel positions 

x, y and gear selection. At the same time, encoder signals 

from a brushless DC motor are captured to compute the 

vehicle’s real-time speed. 



การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48  
The 48th Electrical Engineering Conference (EECON-48)  
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่  

 

 
 

Fig. 2. System flowchart of the SMC-based motor control architecture, showing data acquisition, feedback processing, and PWM signal generation 

 

The system first checks whether the SMC activation 

condition is met. This condition is triggered when the y-

axis throttle value reaches 1.0, If the condition is not 

satisfied, the cumulative control error is reset to zero and 

the system operates in open-loop mode. Otherwise, SMC 

is activated. 

The controller begins by calculating the tracking 

error ( )e t  as the difference between the target speed 
targetv  

(set by the user via gear and throttle) and the actual speed 

actualv  as shown in Eq. (3). 

 

target actual( )e t v v= −   (3) 

where 

 
( )e t  = is the tracking error at time t  

targetv  = the desired speed of the vehicle 

actualv  = the current speed measured in real time 

Next, the derivative of the tracking error ( )e t is 

computed to capture the rate of change of the error, as 

shown in Eq. (4). 

 
( ) ( )

( )
e t e t t

e t
t

− − 
=


  (4) 

where 

 
( )e t  = is the tracking error at time t  

( )e t  = derivative of the tracking error 

t  = Time elapsed since the previous measurement 

 

These two values, ( )e t  and ( )e t , are used to form the 

sliding surface ( )s t , which governs the switching logic in 

SMC and is defined as shown in Eq. (1). Based on this 

surface, the system then applies the SMC control law to 

compute the corrective control signal 
smcu , as shown in 

Eq. (2). This signal ensures robust and stable convergence 

toward the condition ( ) 0s t = , even in the presence of 

external disturbances. Finally, the generated 
smcu  is 

combined with a nominal PWM value from the open-loop 

path open_loopu  to produce the final control output 
finalu , as 

shown in Eq. (5),  

 

final open_loop smcu u u= +   (5) 

where 
 

finalu  = the composite PWM signal that incorporates 

both open-loop and feedback-based control 

open_loopu  = the nominal PWM value 

smcu  = the corrective PWM signal from the SMC 

controller 

Before transmission, 
finalu  it is constrained 

within safe operating bounds and sent via serial 

communication to the Pico W.  

The Pico W forwards the bounded PWM to the motor 

driver and applies necessary steering corrections. An ESC 

is integrated to improve dynamic response, enhance speed 

tracking, and reduce overshooting to compute the real-

time velocity used in actualv , the system utilizes feedback 

from an optical encoder attached to the motor shaft. 

The number of pulses pulse_count  is measured within a 

defined sampling interval t , allowing the calculation of 

pulse frequency in hertz, as shown in Eq. (6). 
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pulse_count

pulse_per_sec
t

=


  (6) 

where 

 
pulse_per_sec  = the number of pulses per second (Hz) 

pulse_count  = the number of pulses counted during time 

interval  

t  = sampling time in seconds 

given the number of pulses per wheel revolution 

pulses_per_rev and the wheel diameter wheel_diameter the 

linear speed in meters per second is then calculated, as 

shown in Eq. (7). 

 

mps

pulse_per _ sec
speed heel_diameter

pulses_per_rev
w=    (7) 

where 

 

mpsspeed  = the speed in meters per second 

pulse_per_sec  = the number of pulses per second (Hz) 

pulses_per_ref  = the number of pulses per full wheel 

revolution 

wheel_diameter  = the diameter of the wheel in meters 

To express this result in kilometers per hour, value is 

converted using the factor 3.6, as shown in Eq. (8). 

 

km/h mpsspeed speed 3.6=    (8) 

where 

 

km/hspeed  = the converted speed in kilometers per hour 

mpsspeed  = the speed in meters per second 

This computed speed value is then used as the 

feedback input to the SMC loop on the Raspberry Pi 5, by 

integrating this real-time velocity measurement with the 

control law described previously in Eqs. (1)–(5), the 

system can continuously adjust control efforts to maintain 

target performance even under dynamic load conditions 

and external disturbances. 

Before transmission, the final PWM output is 

constrained within safe operating bounds to prevent 

overdriving the actuators and is sent via serial 

communication to the Pico W, which forwards the 

bounded PWM signal to the motor driver and applies 

steering corrections through the servo motor as needed. 

An ESC mechanism is also integrated into the system to 

improve dynamic response, enhance speed tracking 

precision, and reduce overshooting during rapid 

transitions. Finally, encoder feedback is continuously 

routed back to the Pi 5 in real time, completing the high-

frequency closed-loop control cycle and ensuring stability 

throughout operation. 

3. Implementation 

3.1  Circuit Diagram and Hardware 

Implementation of the SMC-Based Control  

System 
The complete hardware architecture of the proposed 

SMC-based control system is illustrated in Fig. 3, which 

depicts the interaction between the power supply, 

processing unit, actuator interface, and feedback 

components. This modular design separates high-level 

computation from time-sensitive actuation, enhancing 

system reliability, maintainability, and scalability for 

embedded vehicular control applications. 

At the system's core is a 12 V lithium-ion battery 

(15,000 mAh, 3 A continuous discharge), which serves as 

the primary power source. It delivers energy to 

subsystems through two dedicated buck converters, 

ensuring appropriate voltage levels and minimizing the 

risk of overvoltage or current surges. The first converter 

steps the voltage down to 5 V, supplying power to the 

Raspberry Pi 5 and the servo motor, both sensitive to 

fluctuations. The second converter provides a stable 7 V 

to the ESC, which controls the brushless DC (BLDC) 

motor. This separation of power domains reduces 

interference between digital and analogue sections, 

improving overall stability and safety. 

The Raspberry Pi 5 functions as the central control 

unit. It runs the SMC algorithm, processes encoder 

signals, and communicates via UART (RX-TX-GND) 

with a secondary microcontroller—the Raspberry Pi 

Pico W. To prevent power rail noise, the same 5 V supply 

does not power the Pico W but instead draws power 

through the Pi 5's USB port, improving signal integrity 

and simplifying wiring. 

After computing the PWM duty cycle based on 

control laws and real-time velocity feedback, the Pi 5 

sends commands to the Pico W. Acting as the low-level 

actuator controller, the Pico W generates two outputs: a 

PWM signal to the ESC for motor speed control, and a 

servo angle command via GPIO 14. The servo motor 

shares power and ground with the Pi 5 to ensure 

synchronized and noise-free operation. 

The ESC, powered by 7 V, delivers three-phase 

outputs (A, B, and C) to the BLDC motor. In parallel, 

three Hall-effect sensors (Hall A, B, and C) provide rotor 

position and velocity feedback to the Pi 5, enabling 

accurate speed estimation and closed-loop control. This 

feedback ensures the control algorithm adapts precisely to 

real-time operating conditions. 

Overall, the proposed architecture supports robust, 

real-time embedded control for hybrid manual–automatic 

vehicle systems using cost-effective and widely available 

components. The separation of power, computation, and 

actuation layers enhances system modularity, safety, and 

flexibility, making the platform well-suited for 

experimental validation of advanced control strategies. 



การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48  
The 48th Electrical Engineering Conference (EECON-48)  
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่  

 

 
 

Fig. 3. Circuit diagram of the SMC-based vehicle control system, showing power distribution, communication links, and signal pathways between 
the main controller, actuator interface, and motor driver. 

 

4. Results and Discussion 

4.1 Performance Evaluation of the SMC-Based  

Control System 
To evaluate the performance of the proposed SMC-

based control architecture, a series of experiments was 

conducted using a custom-designed chassis dynamometer 

capable of replicating realistic road load conditions. Tests 

were carried out at three discrete gear settings—Gear 1 

(15 km/h), Gear 2 (30 km/h), and Gear 3 (40 km/h)—

under two test conditions: no-load, where the vehicle 

wheels rotate freely without contact with the ground, and 

load, where the vehicle is placed on the dynamometer 

with applied mechanical resistance to simulate real 

driving conditions. 

The primary performance metrics recorded were the 

average PWM duty cycle (%) and current draw (A), 

representing control effort and energy consumption, 

respectively. Fig. 4. as shows in the box plot comparing 

current draw across the three gears under both no-load and 

load conditions. It is evident that the current consumption 

remains low and highly stable in all gear levels under no-

load. In contrast, the load condition significantly 

increases, especially in higher gears. Notably, Gear 3 

under load reaches peak current values exceeding 3.3 A, 

indicating increased torque demand and mechanical 

stress. 
Fig. 5. as shown in the box plot for the PWM duty 

cycle. Despite the added load and speed variation, the 

PWM values remain tightly bound across all gears, 

demonstrating the SMC controller’s ability to preserve 

control stability, reject disturbances, and prevent 

overshooting. 

 
Fig. 4. Box plot of motor current (A) across three gear levels under 

load and no-load conditions. Load simulates driving resistance; no-load 
allows free wheel rotation. 

 

 
 

Fig. 5. Box plot of PWM duty cycle across gear levels. SMC 

maintains tight bounds under load and no-load conditions. 
 

Under the no-load condition shown in Table 1, the 

system maintained low and consistent duty cycle values 

with minimal current draw. For instance, Gear 1 recorded 

an average duty cycle of 8.010 % and a current of only 

0.011 A, whereas Gear 3 slightly increased to 0.267 A due 

to higher target speed. The small variation in duty cycle 

reflects precise control performance when external torque 

is negligible. 
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Table 1. Experimental results under no-load condition. The SMC 
performance demonstrates stable duty cycles with minimal current draw 

across all gears. 
No load  

Gear Avg Duty Cycle (%) Avg Current(A) 

1 8.010 % 0.011 A 

2 8.374 % 0.159 A 

3 8.646 % 0.267 A 

   Duty Cycle (%)  Current(A) 

Gear Max Min Max Min 

1 8.133 % 7.998 % 0.025 A 0.006 A 

2 8.374 % 8.374 % 0.172 A 0.146 A 

3 8.824 % 8.624 % 0.149 A 0.211 A 

 

Under the load condition shown in Table 2, the 

system required significantly more control effort. Gear 3 

recorded the highest average current of 2.869 A, along 

with a duty cycle of 9.985 %. However, even in this 

scenario, the duty cycle remained within a narrow 

operating range (9.999 % max, 9.849 % min), confirming 

the robustness of the SMC algorithm in rejecting 

disturbances and maintaining target velocity. 

 
Table 2. Experimental results under load condition. Increased current 
reflects higher torque demand, while duty cycles remain tightly 

bounded, confirming control stability. 

 Load  

Gear Avg Duty Cycle (%) Avg Current(A) 

1 8.279 % 0.793 A 

2 9.178 % 2.077 A 

3 9.985 % 2.869 A 

   Duty Cycle (%)  Current(A) 

Gear Max Min Max Min 

1 9 % 7.998 % 1.322 A 0.228 A 

2 9.799 % 8.574 % 3.692 A 1.390 A 

3 9.999 % 9.849 % 3.334 A 2.185 A 

 

These findings confirm the effectiveness of the SMC 

scheme in regulating vehicle speed under dynamic and 

resistive environments. The controller compensates for 

load-induced variations while maintaining bounded 

actuation, which helps reduce system stress and enhances 

long-term reliability. Performance consistency across 

gear levels supports the suitability of this control approach 

in hybrid manual–automatic vehicle systems requiring 

real-time feedback control. 

 

5. Conclusion 
This paper presented the design and implementation 

of a robust SMC-based control system for a remote-

controlled vehicle using Raspberry Pi 5 and Pico W. The 

system combines manual throttle, steering, and gear input 

with automated speed regulation through a real-time 

feedback loop driven by encoder data. To ensure precision 

and operational stability, a structured and modular 

hardware architecture—featuring independent power 

regulation, UART-based communication, and closed-

loop motor control—was developed. 

Experimental validation was done using a chassis 

dynamometer under no-load and loaded conditions. The 

results confirmed that the SMC algorithm effectively 

maintained target speeds while compensating for 

mechanical disturbances. The PWM duty cycles remained 

tightly bound, and current responses were stable across all 

gear levels, demonstrating robustness and control 

accuracy. 

Overall, the findings demonstrate the feasibility of 

deploying sliding mode control on low-cost embedded 

platforms for hybrid manual–automatic vehicle systems. 

As future work, the system can be enhanced by 

incorporating wireless control input, adaptive gain tuning, 

and replacing the basic signum function with a boundary 

layer or saturation function to reduce chattering. These 

improvements could increase energy efficiency and 

adaptability under more complex or time-varying load 

conditions. 
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