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Abstract

This paper presents the design and implementation of
a remote-controlled vehicle system that combines manual
input with autonomous control using a Sliding Mode
Control (SMC) algorithm executed on a Raspberry Pi5
platform. The proposed system integrates throttle,
steering, and gear inputs from the user with real-time
closed-loop velocity regulation. The control architecture
employs encoder-based feedback and layered
communication between a Raspberry Pi5 and Raspberry
Pi Pico W, enabling low-latency PWM signal generation
and stable actuation. To evaluate system performance,
experiments were conducted on a custom-built chassis
dynamometer under both no-load and mechanical full
load conditions across multiple gear levels. The results
demonstrate the SMC algorithm’s ability to maintain
consistent tracking accuracy, reject disturbances, and
bound duty cycle variations within a narrow range. These
findings validate the feasibility of applying robust control
strategies on low-cost embedded platforms for hybrid
manual-automatic vehicular systems.

Keywords: Sliding Mode Control, Raspberry Pi 5,
Remote Vehicle, Embedded Control, PWM, Velocity
Regulation, Encoder Feedback, Raspberry Pi Pico W

1. Introduction

Reliable control in vehicular systems under uncertain
mechanical loads and external disturbances remains a
core challenge, particularly in semi-manual settings
where users operate the throttle, steering, and gear
shifting. Maintaining consistent performance under such
hybrid input conditions demands real-time, robust control
strategies. a promising approach is SMC, known for its
robustness against model uncertainties and external
perturbations. By driving system states toward a sliding
surface and maintaining them there, SMC achieves fast
convergence and strong disturbance rejection. As control
platforms integrate manual input with automation, SMC
ensures accurate and stable closed-loop control—even
with active user interaction.

This paper presents the design and implementation of
an SMC-based control system applied to a four-wheel
model vehicle, incorporating a discrete gear-shifting
mechanism. While users manually operate input devices,
the SMC algorithm autonomously adjusts motor speed
through real-time PWM duty cycle modulation to
maintain target velocity.
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System validation was performed using a custom-
built chassis dynamometer capable of simulating realistic
road conditions. Experiments were conducted at three
discrete gear levels—Gear 1 (15 km/h), Gear 2 (30 km/h),
and Gear 3 (40 km/h)—under both no-load and load
scenarios. Key performance metrics such as motor current
and PWM duty cycle were recorded. Results confirm that
the proposed control scheme effectively maintains
stability and tracking performance under hybrid manual—
automatic operation.

2. Methodology
2.1 Overview of the Remote-Controlled
Vehicle System with Sliding Mode Control

Figure 1 provides an overview of the system
architecture, illustrating the communication and control
flow among key modules, including the user interface,
central server, Raspberry Pi 5, Raspberry Pi Pico W,
encoder, and actuators. It shows how user input is
captured and propagated through each layer to enable
real-time actuation via closed-loop feedback, ensuring
responsiveness and accuracy.

The wvehicle operates under a semi-manual
framework, where users control the steering wheel,
throttle, and gear level. At the same time, the embedded
controller computes control actions based on sensor
feedback and real-time processing. Each module plays a
specific role, the user interface captures input, the server
manages communication, the Pi 5 performs computation,
the Pico W executes actuation, and the encoder supplies
velocity feedback; all modules are interconnected via
network and serial communication for synchronized
operation.

The process begins with a USB-connected steering
wheel on a local computer, which transmits X, y positions
and gear selections to the server over a dedicated socket
protocol [3]. The server, using a static IP, forwards this
data to the Pi 5 via a lightweight socket interface. The Pi 5
calculates speed from encoder pulses and communicates
with the PicoW over UART. It then runs the SMC
algorithm to compute speed control, steering angle, and
PWM duty cycle, which are sent to the Pico W for final
actuation. The Pico W sends PWM signals to the DC
motor and angle commands to the servo, completing the
control loop. This modular setup ensures reliable
performance and supports flexible testing of control
strategies



¥
st

msdszauimnmsmadmnssuludh asei 48
The 48" Electrical Engineering Conference (EECON-48)

Tui 19-21 weemou 2568 & Tsansuysui SandaFoalni

Steering Wheel User
o TCP Socket
T . ey
—— D
Q User
« Conected To USER
« Conected To Server
« Sent Data(x,y,gear) To Server Encoder
_
9 Encoder Pulse Quantity
« Sent Pulse Quantity To [ETTTTPTORPTPREI 3
Raspberry P15
« Connect To Raspberry Pi 5

4

Duty And Angle
( ....................

DC Motor And Servo Motor

Z200mm

Server

0 Server

« Wait To Connection From Raspberry Pi 5
And USER

« Sent Data (x,y,gear) To Raspberry Pi 5

« As An Intermediary For Remote Control

& TCP Socket And
Data(x,y,gear)

e Raspberry Pi 5
» Conected To Server Port Recetve To Pico W
» Receive Values From The Encoder To
Calculate Speed.
Raspberry Pi 5 + Receiver Data (x,y.gear) From Server
» Calculate Sliding Mode Control, Speed,
Angle, Duty (PWM)
H « Sent The Information To PicoW
Processed Data
¥
€3 Raspberry Pi PicoW
« Conected To Raspberry Pi 5
« Receiver Data From Raspberry Pi 5
« Sent PWM And Angle To DC Motor
And Servo Motor

Pico W

Fig. 1. Overview of the proposed remote-controlled vehicle system architecture, illustrating the data flow from the user's steering wheel, through a
central server, to the Raspberry Pi 5 and Pico W for SMC-based motor control.

2.2 Sliding Mode Control (SMC) Methodology
SMC is a nonlinear control strategy that offers
robustness against model uncertainties and external
disturbances [1]. It is particularly effective for regulating
dynamic systems such as mobile vehicles. This study
implements SMC on a Raspberry Pi 5 to control vehicle
speed under varying load conditions [4-5], using encoder
feedback to obtain real-time velocity measurements. The
SMC framework consists of three phases sliding surface
definition, reaching phase, and sliding phase. The primary
control objective is to drive the system state such that the
sliding surface s converges to zero and remains there, i.e.,
s(t) =0, indicating that the system has reached the desired

dynamic behavior. As shown in Eq. (1).

s(t) =e(t)+ Aeé(r) (1)
where
s(t) = sliding surface at time ¢
e(t) = tracking error at time ¢
é(t) = derivative of the tracking error
A = A positive constant that defines the slope of the

sliding surface

During the reaching phase, the control input is
designed to drive the system state toward the sliding
surface by applying a discontinuous control law, as shown
in Eq. (2).

This phase is critical to ensure that the system enters
the desired sliding mode in finite time, regardless of initial
conditions or external disturbances. The magnitude of the
control gain plays a key role in determining how quickly
the trajectory converges to the sliding surface, and

improper tuning may lead to excessive control effort or
slow convergence.

where
Uy = The corrective PWM signal from the SMC
controller
K = positive gain that dictates the intensity of the
correction
sgn(s(t)) = is the signum function, which returns +1, —1,

or 0 based on the sign of s(¢)

Once the system reaches the sliding surface, it enters
the sliding phase, where system dynamics are constrained
to follow the linear behavior of the surface. This phase
provides SMC with robustness, enabling effective
rejection of disturbances and model uncertainties.

However, the discontinuous control law may cause
chattering—high-frequency switching that can degrade
actuator performance [2], [6-7]. While this study employs
the basic signum function, future work may introduce a
boundary layer or saturation function to reduce chattering.
The resulting control signal is then used to compute a
PWM duty cycle transmitted to the motor driver, enabling
real-time closed-loop speed control in the vehicle.

2.3 Execution Flowchart of the SMC-Based
Control System

Figure 2 shows the flowchart of the SMC-based
control system implemented on Raspberry Pi5 and
Raspberry Pi Pico W. The process starts with input data
from a central server, including steering wheel positions
X, y and gear selection. At the same time, encoder signals
from a brushless DC motor are captured to compute the
vehicle’s real-time speed.
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Fig. 2. System flowchart of the SMC-based motor control architecture, showing data acquisition, feedback processing, and PWM signal generation

The system first checks whether the SMC activation
condition is met. This condition is triggered when the y-
axis throttle value reaches 1.0, If the condition is not
satisfied, the cumulative control error is reset to zero and
the system operates in open-loop mode. Otherwise, SMC
is activated.

The controller begins by calculating the tracking
error e(¢) as the difference between the target speed v,

target
(set by the user via gear and throttle) and the actual speed
Vwa @S shown in Eq. (3).

a

e(t) = vtarget - vactua] (3)
where
e(t) = is the tracking error at time ¢
v = the desired speed of the vehicle
target
v = the current speed measured in real time

actual

Next, the derivative of the tracking error é(¢) is

computed to capture the rate of change of the error, as
shown in Eq. (4).

_ e(t)—e(t—At)

e(r) A 4)
where
e(t) = is the tracking error at time ¢
é(t) = derivative of the tracking error
At = Time elapsed since the previous measurement

These two values, e(r) and é(¢) , are used to form the
sliding surface s(¢) , which governs the switching logic in
SMC and is defined as shown in Eq. (1). Based on this
surface, the system then applies the SMC control law to
compute the corrective control signal »__, as shown in
Eq. (2). This signal ensures robust and stable convergence
toward the condition s(¥)=0, even in the presence of
external disturbances. Finally, the generated u _ is

combined with a nominal PWM value from the open-loop
path u to produce the final control output u,, as

open_loop

shown in Eq. (5),

uﬁnal = uopcnﬁloop + usmc (5 )
where
Ugpa = the composite PWM signal that incorporates
both open-loop and feedback-based control
u = the nominal PWM value
open_loop
u = the corrective PWM signal from the SMC
e controller
Before transmission, u,, it 1is constrained

within safe operating bounds and sent via serial
communication to the Pico W.

The Pico W forwards the bounded PWM to the motor
driver and applies necessary steering corrections. An ESC
is integrated to improve dynamic response, enhance speed
tracking, and reduce overshooting to compute the real-
time velocity used in v, the system utilizes feedback

actual ?
from an optical encoder attached to the motor shaft.

The number of pulses pulse_count is measured within a
defined sampling interval Af, allowing the calculation of
pulse frequency in hertz, as shown in Eq. (6).



P
v A

msdszauimnmsmadmnssuludh asei 48
The 48" Electrical Engineering Conference (EECON-48)

Tui 19-21 weemou 2568 & Tsansuysui SandaFoalni

pulse_count

At ©)

pulse per sec =

where

pulse per sec = the number of pulses per second (Hz)

the number of pulses counted during time
interval

pulse_count =

sampling time in seconds

At =

given the number of pulses per wheel revolution
pulses_per_rev and the wheel diameter wheel diameter the

linear speed in meters per second is then calculated, as
shown in Eq. (7).

_ pulse_per _sec

speed, . = x 7 x wheel diameter 7
pulses_per rev
where
speedmw = the speed in meters per second

pulse_per_sec = the number of pulses per second (Hz)

the number of pulses per full wheel
revolution

pulses_per ref =

wheel diameter = the diameter of the wheel in meters

To express this result in kilometers per hour, value is
converted using the factor 3.6, as shown in Eq. (8).

speed,,,,, =speed,  x3.6 ®)
where
speed, ., the converted speed in kilometers per hour
speedmp; = the speed in meters per second

This computed speed value is then used as the
feedback input to the SMC loop on the Raspberry Pi 5, by
integrating this real-time velocity measurement with the
control law described previously in Egs. (1)—(5), the
system can continuously adjust control efforts to maintain
target performance even under dynamic load conditions
and external disturbances.

Before transmission, the final PWM output is
constrained within safe operating bounds to prevent
overdriving the actuators and is sent via serial
communication to the PicoW, which forwards the
bounded PWM signal to the motor driver and applies
steering corrections through the servo motor as needed.
An ESC mechanism is also integrated into the system to
improve dynamic response, enhance speed tracking
precision, and reduce overshooting during rapid
transitions. Finally, encoder feedback is continuously
routed back to the Pi 5 in real time, completing the high-
frequency closed-loop control cycle and ensuring stability
throughout operation.

3. Implementation

3.1 Circuit Diagram and Hardware
Implementation of the SMC-Based Control
System

The complete hardware architecture of the proposed
SMC-based control system is illustrated in Fig. 3, which
depicts the interaction between the power supply,
processing unit, actuator interface, and feedback
components. This modular design separates high-level
computation from time-sensitive actuation, enhancing
system reliability, maintainability, and scalability for
embedded vehicular control applications.

At the system's core is a 12V lithium-ion battery
(15,000 mAh, 3 A continuous discharge), which serves as
the primary power source. It delivers energy to
subsystems through two dedicated buck converters,
ensuring appropriate voltage levels and minimizing the
risk of overvoltage or current surges. The first converter
steps the voltage down to 5V, supplying power to the
Raspberry Pi5 and the servo motor, both sensitive to
fluctuations. The second converter provides a stable 7 V
to the ESC, which controls the brushless DC (BLDC)
motor. This separation of power domains reduces
interference between digital and analogue sections,
improving overall stability and safety.

The Raspberry Pi5 functions as the central control
unit. It runs the SMC algorithm, processes encoder
signals, and communicates via UART (RX-TX-GND)
with a secondary microcontroller—the Raspberry Pi
Pico W. To prevent power rail noise, the same 5 V supply
does not power the Pico W but instead draws power
through the Pi 5's USB port, improving signal integrity
and simplifying wiring.

After computing the PWM duty cycle based on
control laws and real-time velocity feedback, the Pi5
sends commands to the Pico W. Acting as the low-level
actuator controller, the Pico W generates two outputs: a
PWM signal to the ESC for motor speed control, and a
servo angle command via GPIO 14. The servo motor
shares power and ground with the Pi5 to ensure
synchronized and noise-free operation.

The ESC, powered by 7V, delivers three-phase
outputs (A, B, and C) to the BLDC motor. In parallel,
three Hall-effect sensors (Hall A, B, and C) provide rotor
position and velocity feedback to the Pi5, enabling
accurate speed estimation and closed-loop control. This
feedback ensures the control algorithm adapts precisely to
real-time operating conditions.

Overall, the proposed architecture supports robust,
real-time embedded control for hybrid manual—-automatic
vehicle systems using cost-effective and widely available
components. The separation of power, computation, and
actuation layers enhances system modularity, safety, and
flexibility, making the platform well-suited for
experimental validation of advanced control strategies.
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Fig. 3. Circuit diagram of the SMC-based vehicle control system, showing power distribution, communication links, and signal pathways between
the main controller, actuator interface, and motor driver.

4. Results and Discussion
4.1 Performance Evaluation of the SMC-Based
Control System

To evaluate the performance of the proposed SMC-
based control architecture, a series of experiments was
conducted using a custom-designed chassis dynamometer
capable of replicating realistic road load conditions. Tests
were carried out at three discrete gear settings—Gear 1
(15km/h), Gear 2 (30 km/h), and Gear 3 (40 km/h)—
under two test conditions: no-load, where the vehicle
wheels rotate freely without contact with the ground, and
load, where the vehicle is placed on the dynamometer
with applied mechanical resistance to simulate real
driving conditions.

The primary performance metrics recorded were the
average PWM duty cycle (%) and current draw (A),
representing control effort and energy consumption,
respectively. Fig. 4. as shows in the box plot comparing
current draw across the three gears under both no-load and
load conditions. It is evident that the current consumption
remains low and highly stable in all gear levels under no-
load. In contrast, the load condition significantly
increases, especially in higher gears. Notably, Gear 3
under load reaches peak current values exceeding 3.3 A,
indicating increased torque demand and mechanical
stress.

Fig. 5. as shown in the box plot for the PWM duty
cycle. Despite the added load and speed variation, the
PWM values remain tightly bound across all gears,
demonstrating the SMC controller’s ability to preserve
control stability, reject disturbances, and prevent
overshooting.
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Fig. 4. Box plot of motor current (A) across three gear levels under
load and no-load conditions. Load simulates driving resistance; no-load
allows free wheel rotation.
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Fig. 5. Box plot of PWM duty cycle across gear levels. SMC
maintains tight bounds under load and no-load conditions.

Under the no-load condition shown in Table 1, the
system maintained low and consistent duty cycle values
with minimal current draw. For instance, Gear 1 recorded
an average duty cycle of 8.010 % and a current of only
0.011 A, whereas Gear 3 slightly increased to 0.267 A due
to higher target speed. The small variation in duty cycle
reflects precise control performance when external torque
is negligible.
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Table 1. Experimental results under no-load condition. The SMC
performance demonstrates stable duty cycles with minimal current draw

across all gears.

No load

Gear Avg Duty Cycle (%) Avg Current(A)

1 8.010 % 0.011 A

2 8.374 % 0.159 A

3 8.646 % 0.267 A

Duty Cycle (%) Current(A)

Gear Max Min Max Min

1 8.133 % 7.998 % 0.025 A 0.006 A

2 8.374 % 8.374 % 0.172 A 0.146 A

3 8.824 % 8.624 % 0.149 A 0211 A

Under the load condition shown in Table 2, the
system required significantly more control effort. Gear 3
recorded the highest average current of 2.869 A, along
with a duty cycle of 9.985 %. However, even in this
scenario, the duty cycle remained within a narrow
operating range (9.999 % max, 9.849 % min), confirming
the robustness of the SMC algorithm in rejecting
disturbances and maintaining target velocity.

Table 2. Experimental results under load condition. Increased current
reflects higher torque demand, while duty cycles remain tightly
bounded, confirming control stability.

Load

Gear Avg Duty Cycle (%) Avg Current(A)

1 8.279 % 0.793 A

2 9.178 % 2.077 A

3 9.985 % 2.869 A

Duty Cycle (%) Current(A)

Gear Max Min Max Min

1 9% 7.998 % 1322 A 0228 A

2 9.799 % 8.574 % 3.692 A 1.390 A

3 9.999 % 9.849 % 3334 A 2.185 A

These findings confirm the effectiveness of the SMC
scheme in regulating vehicle speed under dynamic and
resistive environments. The controller compensates for
load-induced variations while maintaining bounded
actuation, which helps reduce system stress and enhances
long-term reliability. Performance consistency across
gear levels supports the suitability of this control approach
in hybrid manual-automatic vehicle systems requiring
real-time feedback control.

5. Conclusion

This paper presented the design and implementation
of a robust SMC-based control system for a remote-
controlled vehicle using Raspberry Pi 5 and Pico W. The
system combines manual throttle, steering, and gear input
with automated speed regulation through a real-time
feedback loop driven by encoder data. To ensure precision

and operational stability, a structured and modular
hardware architecture—featuring independent power
regulation, UART-based communication, and closed-
loop motor control—was developed.

Experimental validation was done using a chassis
dynamometer under no-load and loaded conditions. The
results confirmed that the SMC algorithm effectively
maintained target speeds while compensating for
mechanical disturbances. The PWM duty cycles remained
tightly bound, and current responses were stable across all
gear levels, demonstrating robustness and control
accuracy.

Overall, the findings demonstrate the feasibility of
deploying sliding mode control on low-cost embedded
platforms for hybrid manual-automatic vehicle systems.
As future work, the system can be enhanced by
incorporating wireless control input, adaptive gain tuning,
and replacing the basic signum function with a boundary
layer or saturation function to reduce chattering. These
improvements could increase energy efficiency and
adaptability under more complex or time-varying load
conditions.
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