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Abstract 
The integration of artificial intelligence into control 

systems remains hindering by a fundamental barrier: the 

inherent risk of applying learning algorithms to physical, 

safety-critical systems. This paper introduces a paradigm 

shift in intelligent control by demonstrating that this high-

risk, trial-and-error problem can be transformed into a 

completely safe, purely data-driven, black-box 

optimization task. We present a novel framework, the 

“Data-Driven Safeguard,” that constructs a high-fidelity 

“fictitious fitness landscape” using only a single set of 

measured input-output data. The surprising core of this 

method lies not in a complex AI model, but in the elegant 

solution of a single linear system, which allows us to 

compute the performance of any candidate controller 

without it ever interacting with physical plant. By 

empirically proving that this safe, virtual landscape 

accurately mirrors the true performance landscape, we 

unlock the ability for any AI optimizer – demonstrated 

here with an Evolution Strategy – to find optimal 

controller parameters with zero physical risk. This work 

redefines the challenge of intelligent control: the goal is 

not just to build a smarter AI, but to create a 

fundamentally safer world for it to learn in.  

Keywords: Adaptive Control, Artificial Intelligence, 

Intelligent Control, Unfalsified Control, Safeguard 

Control  

1. Introduction 
 

The grand vision of Intelligent Control – systems that 

can self-optimize and adapt – has been a driving force in 

our field for decades. Early pioneering work established 

the immense potential of using sophisticated techniques, 

such as neural networks, to control complex dynamical 

systems where traditional models fall short [1-3]. This 

sparked a long-standing quest to create truly autonomous 

controllers. However, a fundamental and persistent 

challenge has always stood in the way: “learner’s 

dilemma.” How can an intelligent algorithm learn and 

explore without posing a direct risk to the physical, often 

safety-critical, system it is connected to?  

In response to this critical safety problem, a powerful 

and uniquely data-driven philosophy emerged: the theory 

of Unfalsified Control (UC) [4]. Unlike approaches that 

require detailed system models, UC introduced the 

revolutionary idea that one could use direct input-output 

data to invalidate, or “falsify,” controllers that are 

inconsistent with desired performance specifications. This 

provided a practical, model-free path towards ensuring 

system safety and was successfully demonstrated for tasks 

like automatic PID tuning [5]. This line of research 

established a key principle: that raw data itself, when used 

correctly, holds the key to safe control. Our work is born 

from this powerful lineage, seeking to extend its original 

promise to its ultimate conclusion.  

While the UC paradigm offered an elegant, data-

centric solution, the broader field has more recently 

pursued safety through different, more complex avenues. 

The current state-of-the-art is largely dominated by Safe 

Reinforcement Learning (Safe RL) and the use of Control 

Barrier Functions (CBFs) [6-7]. These modern methods 

attempt to manage risk by adding complex safety layers, 

constraints, or penalty functions into the learning 

algorithm, often requiring extensive simulations or an 

accurate mathematical model. They operate by trying to 

make the AI learner “smarter” or “more cautious” as it 

interacts with the world.  

This paper argues that this prevailing direction, while 

valuable, misses a more fundamental opportunity. We 

return to the elegant spirit of Unfalsified Control and ask 

a different question: instead of managing the risk of a 

physical trial, what if we could eliminate the need for a 

physical trial entirely? Our work introduces the “Data-

Driven Safeguard,” a framework that uses the core 

principles of UC to achieve something new: the creation 

of a complete, high-fidelity “fictitious fitness landscape” 

from a single data set. This framework is not an 

incremental improvement; it is a paradigm shift. We 

demonstrate that the high-risk problem of intelligent 

control can be transformed into a perfectly safe, offline 

optimization task by solving a single, simple linear 

system.  

The contribution of this work are as follows:  

1. We introduce the Data-Driven Safeguard, a 

novel framework that transforms the high-risk 

physical tuning problem into a completely safe, 

offline computation task.  

2. We show this is achieved by leveraging the 

principles of Unfalsified Control to solve a 

single, well-behaved system of linear equations, 

bypassing the need for complex plant models.  

3. We provide direct, empirical proof that the 

resulting “fictitious fitness landscape” is a high-

fidelity replica of the true performance 

landscape, validating it as a safe and accurate 

virtual testbed.  

4. We demonstrate, through a proof-of-concept 

using an Evolution Strategy, that this framework 

is optimizer-agnostic and can be readily used by 

and AI algorithm to find optimal controller 

parameters with zero physical risk.  
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This paper presents a simpler, more direct path to 

achieving unconditionally safe intelligent control, 

fulfilling the original promise of data-driven methods and 

bypassing the inherent limitations of more complex, 

modern approaches.  

 

 
 

Fig. 1 Ideal Fitness Landscape  

2. The Ideal Stabilizing Region  
 

We assume that the linear plant model is a third-order 

sable process with three distinct poles:  

 

𝑃(𝑠) =
6

(𝑠+1)(𝑠+2)(𝑠+3)
                                (1) 

For simplicity, we implement the feedback loop with the 

standard PI controller structure:  

 𝐶(𝑠) = 𝑘𝑝(1 +
1

𝑇𝑛𝑠
)                                  (2) 

This controller is chosen as it represents the most widely 

used controller in industrial applications, making our 

safety framework directly relevant to a broad range of 

real-world problems. From (1) and (2), we generate the 

Routh Table for our analysis as shown in Table 1.  

Using the Routh-Hurwitz criterion, all elements in the 

first column must be positive:  

𝑠2: −𝑘𝑝 + 10 > 0 → 𝑘𝑝 < 10 

Since the integral time is always positive,  

𝑠0: 6
𝑘𝑝

𝑇𝑛

> 0 → 𝑘𝑝 > 0. 

We now have the first condition on the proportional gain 

𝑘𝑝 ∈ (0,10) and  

𝑥 =
−36

𝑘𝑝

𝑇𝑛
−6𝑘𝑝

2+54𝑘𝑝+60

−𝑘𝑝+10
                       (3) 

For 𝑇𝑛, we consider (3), 𝑥 > 0 and we compute 𝑇𝑛 when 

𝑘𝑝 ∈ {1,2, … ,9} as shown in Table 2.  

  

To visualize the ideal stabilizing region, MATLAB is 

used to make it a clear picture and it will be compared to 

our work under the same situation. Firstly, we compute 

the true error signal 𝑒(𝑡) for 10 seconds for each 

candidate controller within the candidate controller space  

𝑘𝑝𝑖
∈ [−5,20] and 𝑇𝑛𝑖

∈ [−1,100]. 

Secondly, to evaluate performances for all candidate 

controllers, we define the following cost function: 

𝐽𝑖(𝑡) =
‖𝑒𝑖(𝑡)‖𝑡=[0,10𝑠]

2

‖𝑟(𝑡)‖𝑡=[0,10𝑠]
2                                (4) 

where 𝑖 is an index of a candidate controller and 𝑟(𝑡) is a 

unit step function. Thirdly, the ideal fitness landscape is 

plotted as shown in Fig. 1. Next, we implement the 

standard Evolution Strategy (ES) [8] as our artificial 

intelligence computing method (any other optimization 

techniques can be applied) to find ideal optimized 

controllers using initial sixteen destabilizing controllers as 

 𝑘𝑝𝑖
∈ {−5,−1,11,15}  and  𝑇𝑛𝑖

∈ {1,5,10,50}.  

Finally, the ES at 18 generations and returns the results as 

shown in Table 3. The pair (𝑘𝑝
∗ = 3.4204, 𝑇𝑛

∗ =

3.6401) is the ideal optimized controller. This solution 

will be used to compare with our approach as an 

intelligent indicator.  

 
Table 3 Sixteen Optimized Controllers for the Ideal Fitness Landscape 

 

Rank 𝑘𝑝
∗
 𝑇𝑛

∗
 

1 3.4202 3.6401 

2 3.4433 3.7070 

3 3.3581 3.5300 

4 3.3630 3.6440 

5 3.3909 3.7262 

6 3.3891 3.5196 

7 3.3545 3.6535 

8 3.4507 3.7972 

9 3.3652 3.6883 

10 3.3165 3.5413 

11 3.4761 3.6713 

12 3.4861 3.8115 

13 3.3121 3.5266 

14 3.3125 3.4897 

15 3.4921 3.7216 

16 3.3555 3.4414 

 

3. Unfalsified Control Theory 
 

3.1 Experimental Plant Data  

 

Table 1 Routh Table for Stability 

 

𝒔𝟒           1           11      𝟔
𝒌𝒑

𝑻𝒏
 

𝒔𝟑                 6          6𝒌𝒑+6 

𝒔𝟐 −𝒌𝒑+10    𝟔
𝒌𝒑

𝑻𝒏
 

𝒔𝟏                      x 

𝒔𝟎 𝟔
𝒌𝒑

𝑻𝒏
          

 

Table 2 Region of Stabilizing Controllers 

 

𝑘𝑝 𝑇𝑛 

1 >0.3333 

2 >0.5 

3 >0.643 

4 >0.8 

5 >1 

6 >1.286 

7 >1.75 

8 >2.67 

9 >5.4 
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We assume that 𝑃(s) is a completely unknown plant, 𝐶𝑖(𝑠) 
is a candidate controller where 𝑖 ∈ 𝑴 = {1,2, … ,𝑚}.  The 

finite set of 𝑚 candidate controllers is defined as 𝜔𝑚 =
𝜔𝑠 ∪ 𝜔𝑑 where 𝜔𝑠 is a set of stabilizing controllers and 

𝜔𝑑 is a set of destabilizing controllers for the unknown 

plant 𝑃(s).  Then we assume an active controller 𝐶̂(𝑠) ∈
𝜔𝑠 and we can observe the bounded experimental plant 

input data as  

𝑈̂(𝑠) =
𝐶̂(𝑠)

1+𝐶̂(𝑠)𝑃(𝑠)
𝑅(𝑠)                       (5) 

and the bounded experimental plant output data as  

𝑌̂(𝑠) =
𝐶̂(𝑠)𝑃(𝑠)

1+𝐶̂(𝑠)𝑃(𝑠)
𝑅(𝑠).                       (6)     

3.2 Original Fictitious Signals  

 

The original fictitious reference signal [4] for a candidate 

controller 𝐶𝑖(𝑠) can be computed as  

𝑅̃𝑖(𝑠) = 𝐶𝑖
−1(𝑠)𝑈̂(𝑠) + 𝑌̂(𝑠).                             (7) 

Using (6) and (7), the original fictitious error signal for 

𝐶𝑖(𝑠) is obtained as  

𝐸𝑖̃(𝑠) = 𝑅𝑖̃(𝑠) − 𝑌̂(𝑠).                                        (8) 

 

3.3 Relationship of Fictitious Reference Signal and 

True Reference Signal 

 

Taking (5) and (6) into (7), we obtain  

𝑅̃𝑖(𝑠) =
𝐶̂(𝑠)

𝐶𝑖(𝑠)

1 + 𝐶𝑖(𝑠)𝑃(𝑠)

1 + 𝐶(𝑠)𝑃(𝑠)
𝑅(𝑠) =

𝐶̂(𝑠)𝑆̂(𝑠)

𝐶𝑖(𝑠)𝑆𝑖(𝑠)
𝑅(𝑠) 

 

𝑅̃𝑖(𝑠) = Λ ̃𝑖(𝑠)𝑅(𝑠)                            (9) 

where 𝑆̂(𝑠) =
1

1+𝐶̂(𝑠)𝑃(𝑠)
  is the unknown sensitivity 

function for the active closed-loop pair (𝐶̂(𝑠), 𝑃(𝑠)) and 

𝑆𝑖(𝑠) =
1

1+𝐶𝑖(𝑠)𝑃(𝑠)
 is the unknown sensitivity function for 

a non-active closed-loop pair (𝐶𝑖(𝑠), 𝑃(𝑠)). A black-box 

mapping Λ̃𝑖(𝑠) is called the fictitious signal generator for 

𝐶𝑖(𝑠). Note that if 𝐶𝑖(𝑠) = 𝐶̂(𝑠), then 𝑅̃𝑖(𝑠) = 𝑅(𝑠) 
and  𝐸̃𝑖(𝑠) = 𝐸(𝑠). Thus, the original fictitious signals for 

the active controller 𝐶̂(𝑠) are the same as the true signals.  

 

3.4 PI Controller Structure  

 

We use the standard PI controller structure, e.g.,  

𝐶𝑖(𝑠) = 𝑘𝑝𝑖
(1 +

1

𝑇𝑛𝑖
𝑠
).  Using (9), we obtain 

𝑅𝑖̃(𝑠) =
𝑠

𝑘𝑝𝑖
𝑠+

𝑘𝑝𝑖
𝑇𝑛𝑖

𝑈̂(𝑠) + 𝑌̂(𝑠).                        (10) 

We realize (10) into a state-space representation,  

[
𝑥̇𝑖

⋯
𝑟𝑖̃

] =

[
 
 
 −

1

𝑇𝑛𝑖

1

𝑘𝑝𝑖

0

⋯ ⋯ ⋯

−
1

𝑇𝑛𝑖

1

𝑘𝑝𝑖

1
]
 
 
 

[

𝑥𝑖

⋯
𝑢̂
𝑦̂

].                             (11) 

Note that the state-space system is always stable since the 

integral time is positive. Thus, the PI controller structure 

is causally left invertible.  

 

3.5 Deconvolution 

 

We use the relationship of the original fictitious signals 

[9]:  

𝐸𝑖̃(𝑠) = 𝑆𝑖(𝑠)𝑅𝑖̃(𝑠).                                (12) 

Considering the transfer function in the time-domain: 
{𝑒̃𝑖(𝑘)} = {𝑠𝑖(𝑘)} ∗ {𝑟𝑖̃(𝑘)}  

where 𝑒̃𝑖(𝑘) = ∑ 𝑟𝑖̃(𝑘 − 𝑗)𝑠𝑖(𝑗), ∀𝑖𝑘
𝑗=0  and iterating 𝑘 =

0,1,2, . . , 𝑙:  
𝑒̃𝑖(0) = 𝑟̃𝑖(0)𝑠𝑖(0) 
𝑒̃𝑖(1) = 𝑟̃𝑖(1)𝑠𝑖(0) + 𝑟̃𝑖(0)𝑠𝑖(1) 
⋮ 

𝑒̃𝑖(𝑙) = ∑ 𝑟̃𝑖(𝑙 − 𝑗)𝑠𝑖(𝑙).
𝑙

𝑗=0
 

It is straightforward to compute {𝑠𝑖(𝑘)} iteratively as  

𝑠𝑖(0) =
𝑒̃𝑖(0)

𝑟𝑖̃(0)
 

𝑠𝑖(1) =
𝑒̃𝑖(1) − 𝑠𝑖(0)𝑟𝑖̃(1)

𝑟𝑖̃(0)
 

⋮ 

𝑠𝑖(𝑙) =
𝑒̃𝑖(𝑙) − ∑ 𝑠𝑖(𝑚)𝑟𝑖̃(𝑙 − 𝑚)𝑙−1

𝑚=0

𝑟𝑖̃(0)
 

where 

∀𝑖, 𝑟𝑖  ̃(0) ≠ 0. 

Thus, the estimated sensitivity vector is  

𝒔𝒊 =

[
 
 
 
 
𝑠𝑖(0)
𝑠𝑖(1)

𝑠𝑖(2)
⋮

𝑠𝑖(𝑙)]
 
 
 
 

.                            (13) 

 

3.6 Artificial Error Signal 

 

The artificial error signal can be defined [6] as  

𝐸𝑖
∗(𝑠) = 𝑆𝑖(𝑠)𝑅(𝑠)                                                (14) 

or in the time-domain, we directly compute as  

𝑒𝑖
∗(0) = 𝑟(0)𝑠𝑖(0) 

𝑒𝑖
∗(1) = 𝑟(1)𝑠𝑖(0) + 𝑟(0)𝑠𝑖(1) 

⋮ 

𝑒𝑖
∗(𝑙) = ∑ 𝑟(𝑙 − 𝑗)𝑠𝑖(𝑙)

𝑙

𝑗=0
. 

Therefore, the artificial error vector is  

𝒆𝒊
∗ =

[
 
 
 
 
𝑒𝑖

∗(0)

𝑒𝑖
∗(1)

𝑒𝑖
∗(2)
⋮

𝑒𝑖
∗(𝑙)]

 
 
 
 

.                                     (15) 

 

3.7 Artificial Cost Function  

 

In this work, we assume that the stabilizing controller  

𝐶̂(𝑠) = 1(1 +
1

𝑠
) 

was in the loop up to 10 seconds after a unit step was 

applied. We have observed 𝑟[0,10](𝑡), 𝑢̂[0,10](𝑡), 𝑦̂[0,10](𝑡). 

Note that the unknown plant 𝑃(𝑠) is used for generating 

our plant input and output data. The artificial cost function 
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is defined similarly with the artificial error signal 𝑒𝑖
∗(𝑘) 

and the true reference signal 𝑟(𝑘) as  

𝐽𝑖
∗(𝑘) =

‖𝑒𝑖
∗(𝑘)‖

2

‖𝑟(𝑘)‖2 .                               (16) 

In this example, we implement every signal for 10 

seconds and the sampling time is 0.1 seconds. Thus, the 

maximum iteration is 100. Using the artificial cost 

function, the fictitious landscape is computed as shown in 

Fig. 2 and the ES terminates at 20 generations as shown 

in Table 4. Note that the pair (𝑘𝑝
∗ = 2.9430, 𝑇𝑛

∗ =

3.2396) is the fictitious optimized controller. In addition, 

using MATLAB, we can design a PI controller using 

“pidtune” function as follows:  

sys = zpk([],[-1,-2,-3], 6) 

C0 = pidstd(1,1,0) 

C = pidtune(sys, C0).  

 
 

Fig. 2 The Fictitious Fitness Landscape  
 

We obtain the pair (𝑘𝑝
∗ = 1.26, 𝑇𝑛

∗ = 1.51). Finally, three 

optimized controllers from the three different approaches 

as shown in Fig. 3. 
 

 
Fig. 3 Comparison 

 

Table 4 Sixteen Optimized Controllers for the Fictitious Fitness 
Landscape 

 

Rank 𝑘𝑝
∗
 𝑇𝑛

∗
 

1           2.9430 3.2396 

2 2.9273 3.1987 

3 2.9377 3.3105 

4 2.9635 3.2736 

5 2.9396 3.3185 

6 2.9017 3.2102 

7 2.8999 3.1996 

8 2.8930 3.1961 

9 2.8894 3.1723 

10 2.9359 3.3389 

11 2.8910 3.1627 

12 2.8955 3.1516 

13 2.8852 3,1430 

14 2.8846 3.1423 

15 2.9593 3.1978 

16 2.8808 3.1491 

 

4. Discussions 
 

From the experimental results as shown in Fig. 3, 

unfalsified control can bring the optimized controller out 

closely to the ideal one. This is the most important thing 

because we only use data obtained from measurements to 

evaluate the ability of candidate controllers without 

connecting them in the real loop. It is not the ability of 

artificial intelligence alone, but it is due to the method of 

computing the artificial error signals that makes controller 

performance prediction possible.  

The results presented in this paper validate the core 

thesis: that the high-risk problem of intelligent control can 

be transformed into a completely safe, data-driven 

optimization task. This section discusses the practical 

implications of this framework, including its 

computational complexity, hardware deployment 

considerations, and its generality with respect to the 

choice of AI optimizer.  

 

A. Computational Complexity and Real-World 

Deployment 

 

A crucial aspect of any practical control strategy is its 

computational feasibility. The proposed Data-Driven 

Safeguard framework consists of two distinct 

computational stages:  

 

1. Safeguard Construction (Solving Ax=b):  

The heart of our method is the construction of the 

fictitious fitness landscape by solving the linear system 

Ax=b for the artificial error vector 𝑒∗. A key property of 

the matrix A is that it is a lower triangular Toeplitz matrix. 

This structure allows the system to be solved with extreme 

efficiency using forward substitution, a non-iterative and 

deterministic algorithm. The computational complexity of 

this step is 𝑂(𝑛2), where 𝑛 is the length of the data set. 

For typical control applications, where 𝑛 might be a few 

thousand data points, this calculation is computationally 

trivial for any modern processor and can be completed in 

well under a second.  

2. AI Optimization (Searching the Landscape):  

Once the safeguard is in place, the AI optimizer (in our 

case, an Evolution Strategy) performs its search. This is 

the most computationally intensive part. However, it is 

critical to emphasize that this entire process is performed 

offline. The AI interacts only with the safe, virtual 

landscape, not the physical plant. Therefore, the runtime 

of the optimizer is not a real-time constraint. It is a 

practical engineering consideration, where a search 

lasting seconds or minutes is perfectly acceptable for 

finding optimal controller parameters before deployment.  
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Given this two-stage process, we can now address the 

question of hardware, While our initial thoughts might 

have considered low-cost platforms like a Raspberry Pi, 

the professional and safety-critical nature of this 

framework demands a more robust architecture. The ideal 

real-world deployment would utilize a hybrid hardware 

architecture:  

- High-Level Optimizer: An Industrial PC (IPC) 

or a dedicated System-on-Module (SoM) like the 

NVIDIA Jetson would be responsible for the 

offline tasks: collecting the initial data set, 

solving the Ax=b system, and running the AI 

optimizer to find the optimal controller gains 

(Kp, Tn). Its powerful processor is well-suited 

for these computationally intensive, non-real-

time tasks.  

- Low-Level Real-Time Controller: The proven, 

safe controller parameters discovered by the AI 

are then downloaded to a dedicated 

Microcontroller (MCU) or a Digital Signal 

Controller (DSC). This hardware is solely 

responsible for executing the simple PI control 

law in hard real-time. This separation of 

concerns is a classic design pattern in safety-

critical systems, ensuring that the complex, 

intelligent “brain” is isolated from the last, 

reliable “reflexes” of the real-time control loop. 

This architecture guarantees both intelligence 

and safety.  

 

B. Generality and Alternative Optimization Strategies  

 

The second key recommendation was to highlight the 

generality of our framework by considering other 

optimization methods. This is an excellent point that 

underscores a core strength of our approach: the Data-

Driven Safeguard is optimizer-agnostic.  

 

The framework’s primary contribution is the creation of 

the safe virtual testbed. Once this testbed exists, any 

black-box optimization algorithm can be deployed to 

search it. We chose the Evolution Strategy (ES) for this 

paper as a robust, proof-of-concept demonstrator. 

However, other algorithms are equally viable and offer 

different performance trade-offs: 

- Particle Swarm Optimization (PSO): PSO is 

another population-based algorithm, often 

lauded for its fast convergence speed. It could 

potentially find a high-quality solution in fewer 

iterations than ES. However, it can sometimes be 

more prone to premature convergence on local 

optima. Deploying PSO on our fictitious 

landscape would be a straightforward process 

and a valid alternative.  

- Bayesian Optimization (BO): BO is a powerful 

technique for optimizing functions that are 

expensive to evaluate. It builds a probabilistic 

model of the objective function and uses it to 

select the most promising points to evaluate next. 

In our context, each “evaluation” is a quick 

calculation using the artificial error vector 𝑒∗ 

vector, not a physical experiment. BO would be 

particularly interesting if the landscape were 

highly complex, as it is extremely sample-

efficient.  

 

The crucial point is that our framework makes it safe to 

use any of these. The choice of ES, PSO, or BO becomes 

a secondary engineering decision based on desired 

convergence speed and problem complexity, rather than a 

primary decision based on physical risk. While a detailed 

benchmark comparing the performance of these 

optimizers within our framework is a compelling 

direction for future work, it falls outside the scope of this 

paper’s primary goal: to introduce and validate the safety 

concept itself. The success of the ES is sufficient to prove 

that the fictitious landscape is not only safe but also 

effectively searchable.  

 

5. Conclusion 
 

This paper has successfully introduced and validated 

a novel framework that fundamentally redefines the 

application of AI in control systems by resolving the 

critical issue of safety. We have demonstrated that it is 

possible to completely decouple the exploratory, trial-

and-error nature of AI optimization from the physical 

plant. The “Data-Driven Safeguard” presented here 

constructs a “fictitious fitness landscape” – a safe and 

accurate virtual testbed for controller tuning – using 

nothing more than a single set of measured data. Our 

results empirically confirm that this virtual landscape is a 

high-fidelity replica of the true performance landscape, 

allowing an AI optimizer to find optimal solutions without 

ever posing a risk to the real-world system.  

 

The most striking aspect of this work is perhaps its 

foundational simplicity. While the world pursues ever-

more-complex AI models to solve the control problem, 

our research reveals that the key to unlocking safe 

intelligent control was not hidden in complexity, but in a 

change of perspective. By leveraging the principles of 

Unfalsified Control to solve for an “artificial error” via a 

simple linear system (Ax=b), we have turned what was 

once a high-risk physical experiment into a safe and 

deterministic computational problem. It is a classic case 

of a “hidden in plain sight” solution, where the most 

profound impact comes from the most elegant and 

unexpected of sources.  

 

The implications of this discovery are far-reaching. 

This framework is optimizer-agnostic and can serve as a 

universal safety layer for a wide array of AI-based 

optimization techniques. It paves the way for the 

confident application of intelligent controllers in fields 

where safety is paramount, from industrial manufacturing 
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and robotics to autonomous vehicles. Ultimately, the 

“Data-Driven Safeguard” offers more than just a new 

technique; it offers a new philosophy for building the next 

generation of control systems – systems that are not only 

intelligent but are, by their very design, fundamentally 

safe.  

 

6. Future Work  
 

The success of the Data-Driven Safeguard 

framework opens up numerous exciting avenues for 

future research. We believe this work can serve as 

foundation stepping stone for a new generation of safe 

intelligent systems. We propose the following directions 

for researchers interested in building upon this paradigm:  

1. Extension to MIMO and Complex Systems: The 

current work focused on a SISO system. A 

significant and valuable next step would be to 

extend the mathematical framework to handle 

MIMO systems, which are common in industrial 

processes. This would involve investigating the 

structure of the resulting linear equations and the 

scalability of the approach.  

2. Online, Adaptive Safeguarding: This paper 

demonstrated an offline approach where the 

safeguard is constructed once before 

deployment. A highly impactful extension would 

be to develop an online, adaptive version. This 

would involve techniques for continuously 

updating the fictitious landscape using real-time 

data, allowing the AI to safely re-optimize the 

controller in response to changing system 

dynamics or environmental conditions, without 

ever needing to inject risky exploratory signals.  

3. Benchmarking and Integration with Advanced 

AI Optimizers: While we proved the concept 

with an Evolution Strategy, a comprehensive 

study is warranted to benchmark the 

performance of various state-of-the-art 

optimizers (e.g., Bayesian Optimization, 

advances Reinforcement Learning agents like 

PPO or SAC) on the safe landscape. The goal 

would be to identify which optimizers are most 

efficient at exploiting the information contained 

within the data-driven safeguard.  

4. Hardware-in-the-Loop (HIL) Validation: To 

bridge the gap between simulation and real-

world application, the next logical step is to 

deploy and validate this framework on a 

Hardware-in-the-loop (HIL) testbed or a pilot-

scale industrial process. This would provide 

invaluable data on the real-world performance 

and robustness of the safeguard under noisy 

conditions and hardware limitations, confirming 

its readiness for industrial adoption.  

5. Formal Safety Guarantees: While our empirical 

results show a near-perfect match between the 

fictitious and real landscapes, a theoretical 

investigation into providing formal 

mathematical guarantees on the “closeness” of 

the two landscapes under specific noise 

andncertainty conditions would be a powerful 

contribution, further solidifying the framework’s 

reliability for the most critical of applications.  
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