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Abstract

The integration of artificial intelligence into control
systems remains hindering by a fundamental barrier: the
inherent risk of applying learning algorithms to physical,
safety-critical systems. This paper introduces a paradigm
shift in intelligent control by demonstrating that this high-
risk, trial-and-error problem can be transformed into a
completely safe, purely data-driven, black-box
optimization task. We present a novel framework, the
“Data-Driven Safeguard,” that constructs a high-fidelity
“fictitious fitness landscape” using only a single set of
measured input-output data. The surprising core of this
method lies not in a complex Al model, but in the elegant
solution of a single linear system, which allows us to
compute the performance of any candidate controller
without it ever interacting with physical plant. By
empirically proving that this safe, virtual landscape
accurately mirrors the true performance landscape, we
unlock the ability for any Al optimizer — demonstrated
here with an Evolution Strategy — to find optimal
controller parameters with zero physical risk. This work
redefines the challenge of intelligent control: the goal is
not just to build a smarter Al, but to create a
fundamentally safer world for it to learn in.

Keywords: Adaptive Control, Artificial Intelligence,
Intelligent Control, Unfalsified Control, Safeguard
Control

1. Introduction

The grand vision of Intelligent Control — systems that
can self-optimize and adapt — has been a driving force in
our field for decades. Early pioneering work established
the immense potential of using sophisticated techniques,
such as neural networks, to control complex dynamical
systems where traditional models fall short [1-3]. This
sparked a long-standing quest to create truly autonomous
controllers. However, a fundamental and persistent
challenge has always stood in the way: “learner’s
dilemma.” How can an intelligent algorithm learn and
explore without posing a direct risk to the physical, often
safety-critical, system it is connected to?

In response to this critical safety problem, a powerful
and uniquely data-driven philosophy emerged: the theory
of Unfalsified Control (UC) [4]. Unlike approaches that
require detailed system models, UC introduced the
revolutionary idea that one could use direct input-output
data to invalidate, or “falsify,” controllers that are
inconsistent with desired performance specifications. This
provided a practical, model-free path towards ensuring
system safety and was successfully demonstrated for tasks
like automatic PID tuning [5]. This line of research
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established a key principle: that raw data itself, when used
correctly, holds the key to safe control. Our work is born
from this powerful lineage, seeking to extend its original
promise to its ultimate conclusion.

While the UC paradigm offered an elegant, data-
centric solution, the broader field has more recently
pursued safety through different, more complex avenues.
The current state-of-the-art is largely dominated by Safe
Reinforcement Learning (Safe RL) and the use of Control
Barrier Functions (CBFs) [6-7]. These modern methods
attempt to manage risk by adding complex safety layers,
constraints, or penalty functions into the learning
algorithm, often requiring extensive simulations or an
accurate mathematical model. They operate by trying to
make the Al learner “smarter” or “more cautious” as it
interacts with the world.

This paper argues that this prevailing direction, while
valuable, misses a more fundamental opportunity. We
return to the elegant spirit of Unfalsified Control and ask
a different question: instead of managing the risk of a
physical trial, what if we could eliminate the need for a
physical trial entirely? Our work introduces the “Data-
Driven Safeguard,” a framework that uses the core
principles of UC to achieve something new: the creation
of a complete, high-fidelity “fictitious fitness landscape”
from a single data set. This framework is not an
incremental improvement; it is a paradigm shift. We
demonstrate that the high-risk problem of intelligent
control can be transformed into a perfectly safe, offline
optimization task by solving a single, simple linear
system.

The contribution of this work are as follows:

1. We introduce the Data-Driven Safeguard, a
novel framework that transforms the high-risk
physical tuning problem into a completely safe,
offline computation task.

2. We show this is achieved by leveraging the
principles of Unfalsified Control to solve a
single, well-behaved system of linear equations,
bypassing the need for complex plant models.

3. We provide direct, empirical proof that the
resulting “fictitious fitness landscape” is a high-
fidelity replica of the true performance
landscape, validating it as a safe and accurate
virtual testbed.

4. We demonstrate, through a proof-of-concept
using an Evolution Strategy, that this framework
is optimizer-agnostic and can be readily used by
and Al algorithm to find optimal controller
parameters with zero physical risk.
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This paper presents a simpler, more direct path to
achieving unconditionally safe intelligent control,
fulfilling the original promise of data-driven methods and
bypassing the inherent limitations of more complex,
modern approaches.

Fig. 1 Ideal Fitness Landscape
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2. The Ideal Stabilizing Region

We assume that the linear plant model is a third-order
sable process with three distinct poles:

6

P(S) = (s+1)(s+2)(s+3) (1)
For simplicity, we implement the feedback loop with the
standard PI controller structure:

C(©) =kp(1+5) @)
This controller is chosen as it represents the most widely
used controller in industrial applications, making our
safety framework directly relevant to a broad range of
real-world problems. From (1) and (2), we generate the
Routh Table for our analysis as shown in Table 1.
Using the Routh-Hurwitz criterion, all elements in the
first column must be positive:

s?:—k, +10>0 -k, < 10

Since the integral time is always positive,

0 kp
s:6—>0-k,>0.
T

We now have the first condition on the proportional gain
k, € (0,10) and
—362 6k +54kp+60
T. P P
x=—" 3)
~kp+10

For T,,, we consider (3), x > 0 and we compute T,, when
ky, €{1,2, .. ,9} as shown in Table 2.

To visualize the ideal stabilizing region, MATLAB is
used to make it a clear picture and it will be compared to
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our work under the same situation. Firstly, we compute
the true error signal e(t) for 10 seconds for each
candidate controller within the candidate controller space
ky, € [-5,20] and T,, € [—1,100].

Table 2 Region of Stabilizing Controllers
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Secondly, to evaluate performances for all candidate
controllers, we define the following cost function:
_ llei®N-[o,105

S = @
where i is an index of a candidate controller and r(t) is a
unit step function. Thirdly, the ideal fitness landscape is
plotted as shown in Fig. 1. Next, we implement the
standard Evolution Strategy (ES) [8] as our artificial
intelligence computing method (any other optimization
techniques can be applied) to find ideal optimized
controllers using initial sixteen destabilizing controllers as
ky, € {=5,-1,11,15} and T,, € {1,5,10,50}.
Finally, the ES at 18 generations and returns the results as
shown in Table 3. The pair (k; =3.4204,T; =
3.6401) is the ideal optimized controller. This solution
will be used to compare with our approach as an
intelligent indicator.

Table 3 Sixteen Optimized Controllers for the Ideal Fitness Landscape

Rank k; T,
1 3.4202 3.6401
2 3.4433 3.7070
3 3.3581 3.5300
4 3.3630 3.6440
5 3.3909 3.7262
6 3.3891 3.5196
7 3.3545 3.6535
8 3.4507 3.7972
9 3.3652 3.6883
10 3.3165 3.5413
11 3.4761 3.6713
12 3.4861 3.8115
13 3.3121 3.5266
14 3.3125 3.4897
15 3.4921 3.7216
16 3.3555 3.4414

3. Unfalsified Control Theory

3.1 Experimental Plant Data
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We assume that P(s) is a completely unknown plant, C;(s)
is a candidate controller where i € M = {1,2, ..., m}. The
finite set of m candidate controllers is defined as w,, =
ws U wy where wg is a set of stabilizing controllers and
wq 1s a set of destabilizing controllers for the unknown
plant P(s). Then we assume an active controller C(s) €
w, and we can observe the bounded experimental plant

input data as
_ e

U(S) 1+C(s)P(s) ( ) (5)
and the bounded experimental plant output data as
_CPB)
7(5) = 1t R(s). (6)

3.2 Original Fictitious Signals

The original fictitious reference signal [4] for a candidate
controller C;(s) can be computed as

Ri(s) = CTH()U(s) + Y (s). (7
Using (6) and (7), the original fictitious error signal for
C;(s) is obtained as

E(s) =R.(s) = Y (s). @®)

3.3 Relationship of Fictitious Reference Signal and
True Reference Signal

Taking (5) and (6) into (7), we obtain

. C(s) 1+ C;(s)P(s) C(s)S(s)
O =@ 1rcore "® T amsm e
Ri(s) = K;(s)R(s) ©)
where S(s) = YV IETIO] is the unknown sensitivity

function for the active closed-loop pair (€(s), P(s)) and

S() = e
a non-active closed-loop pair (C;(s), P(s)). A black-box
mapping A; (s) is called the fictitious signal generator for
C;(s). Note that if C;(s) = C(s), then R;(s) = R(s)
and E;(s) = E(s). Thus, the original fictitious signals for
the active controller C(s) are the same as the true signals.

is the unknown sensitivity function for

3.4 PI Controller Structure

We use the standard PI controller structure, e.g.,

Ci(s) = k,,(1 + ) Using (9), we obtain
R(8) = — - 0() + 7(s). (10)
kpl.s+T—n;

We realize (lO) into a state -space representation,

EEEE H "

Tnl k,,l
Note that the state-space system is always stable since the
integral time is positive. Thus, the PI controller structure
is causally left invertible.

= D

3.5 Deconvolution

We use the relationship of the original fictitious signals
[9]:
E,(s) = Si($)R,(5). (12)
Considering the transfer function in the time-domain:
{&i(k)} = {si(k)} + {Fi(k)}
where é;(k) = Z?:o 7(k — j)s;(j), Vi and iterating k =
012,..,6
€,(0) = 7;(0)s;(0)
& (1) =7(1)s;(0) +7;(0)s; (1)

l
a0 =) Hl=Ds).
]:

It is straightforward to compute {s; (k)} iteratively as

& :(0)
TR o
é; si(0)n
si(1) = =0)
s (0) = &) -2 rzo()m)n(l m)
where
Vi, 77 (0) # 0.
Thus, the estimated sensitivity vector is
s:(0)
5:(1)
si=|s:(2)] (13)
s: (D

3.6 Artificial Error Signal

The artificial error signal can be defined [6] as
Ei(s) = Si(s)R(s) (14)
or in the time-domain, we directly compute as
e; (0) = r(0)s;(0)
ei (1) =7r(1)s;(0) +r(0)s;(1)

l
=) rl=is).
j=

Therefore, the artificial error vector is

e; (0)
e/ (1)
=le; )] (15)

e;(D
3.7 Artificial Cost Function

In this work, we assume that the stabilizing controller

R 1

Cs)y=11+ E)
was in the loop up to 10 seconds after a unit step was
applied. We have observed 7o 10)(t), @ijo,10](t), Pjo,10) (£)-

Note that the unknown plant P(s) is used for generating
our plant input and output data. The artificial cost function
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is defined similarly with the artificial error signal e; (k)
and the true reference signal r(k) as
(k) = Lol

Jit) =" (16)
In this example, we implement every signal for 10
seconds and the sampling time is 0.1 seconds. Thus, the
maximum iteration is 100. Using the artificial cost
function, the fictitious landscape is computed as shown in
Fig. 2 and the ES terminates at 20 generations as shown
in Table 4. Note that the pair (k;, = 2.9430,T, =
3.2396) is the fictitious optimized controller. In addition,
using MATLAB, we can design a PI controller using
“pidtune” function as follows:
Sys = Zpk([]s['l"z"s]s 6)
CO0 = pidstd(1,1,0)
C = pidtune(sys, C0).

Fictitinus Fitnes Landscape

Fig. 2 The Fictitious Fitness Landscape

We obtain the pair (k; =1.26,T, = 1.51). Finally, three
optimized controllers from the three different approaches
as shown in Fig. 3.

s
Time [sec]

Fig. 3 Comparison

Table 4 Sixteen Optimized Controllers for the Fictitious Fitness
Landscape

Rank k, T,
1 2.9430 3.2396
2 2.9273 3.1987
3 2.9377 3.3105
4 2.9635 3.2736
5 2.9396 3.3185
6 2.9017 3.2102
7 2.8999 3.1996
8 2.8930 3.1961
9 2.8894 3.1723
10 2.9359 3.3389
11 2.8910 3.1627
12 2.8955 3.1516
13 2.8852 3,1430

Z200mm

14 2.8846 3.1423
15 2.9593 3.1978
16 2.8808 3.1491

4. Discussions

From the experimental results as shown in Fig. 3,
unfalsified control can bring the optimized controller out
closely to the ideal one. This is the most important thing
because we only use data obtained from measurements to
evaluate the ability of candidate controllers without
connecting them in the real loop. It is not the ability of
artificial intelligence alone, but it is due to the method of
computing the artificial error signals that makes controller
performance prediction possible.

The results presented in this paper validate the core
thesis: that the high-risk problem of intelligent control can
be transformed into a completely safe, data-driven
optimization task. This section discusses the practical
implications of this framework, including its
computational complexity, hardware deployment
considerations, and its generality with respect to the
choice of Al optimizer.

A. Computational
Deployment

Complexity and Real-World

A crucial aspect of any practical control strategy is its
computational feasibility. The proposed Data-Driven
Safeguard framework consists of two distinct
computational stages:

1. Safeguard Construction (Solving Ax=b):

The heart of our method is the construction of the
fictitious fitness landscape by solving the linear system
Ax=Db for the artificial error vector e*. A key property of
the matrix A is that it is a lower triangular Toeplitz matrix.
This structure allows the system to be solved with extreme
efficiency using forward substitution, a non-iterative and
deterministic algorithm. The computational complexity of
this step is O(n?), where n is the length of the data set.
For typical control applications, where n might be a few
thousand data points, this calculation is computationally
trivial for any modern processor and can be completed in
well under a second.

2. Al Optimization (Searching the Landscape):
Once the safeguard is in place, the Al optimizer (in our
case, an Evolution Strategy) performs its search. This is
the most computationally intensive part. However, it is
critical to emphasize that this entire process is performed
offline. The Al interacts only with the safe, virtual
landscape, not the physical plant. Therefore, the runtime
of the optimizer is not a real-time constraint. It is a
practical engineering consideration, where a search
lasting seconds or minutes is perfectly acceptable for
finding optimal controller parameters before deployment.
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Given this two-stage process, we can now address the
question of hardware, While our initial thoughts might
have considered low-cost platforms like a Raspberry Pi,
the professional and safety-critical nature of this
framework demands a more robust architecture. The ideal
real-world deployment would utilize a hybrid hardware
architecture:

- High-Level Optimizer: An Industrial PC (IPC)
or a dedicated System-on-Module (SoM) like the
NVIDIA Jetson would be responsible for the
offline tasks: collecting the initial data set,
solving the Ax=b system, and running the Al
optimizer to find the optimal controller gains
(Kp, Tn). Its powerful processor is well-suited
for these computationally intensive, non-real-
time tasks.

- Low-Level Real-Time Controller: The proven,
safe controller parameters discovered by the Al
are then downloaded to a dedicated
Microcontroller (MCU) or a Digital Signal
Controller (DSC). This hardware is solely
responsible for executing the simple PI control
law in hard real-time. This separation of
concerns is a classic design pattern in safety-
critical systems, ensuring that the complex,
intelligent “brain” is isolated from the last,
reliable “reflexes” of the real-time control loop.
This architecture guarantees both intelligence
and safety.

B. Generality and Alternative Optimization Strategies

The second key recommendation was to highlight the
generality of our framework by considering other
optimization methods. This is an excellent point that
underscores a core strength of our approach: the Data-
Driven Safeguard is optimizer-agnostic.

The framework’s primary contribution is the creation of
the safe virtual testbed. Once this testbed exists, any
black-box optimization algorithm can be deployed to
search it. We chose the Evolution Strategy (ES) for this
paper as a robust, proof-of-concept demonstrator.
However, other algorithms are equally viable and offer
different performance trade-offs:

- Particle Swarm Optimization (PSO): PSO is
another population-based algorithm, often
lauded for its fast convergence speed. It could
potentially find a high-quality solution in fewer
iterations than ES. However, it can sometimes be
more prone to premature convergence on local
optima. Deploying PSO on our fictitious
landscape would be a straightforward process
and a valid alternative.

- Bayesian Optimization (BO): BO is a powerful
technique for optimizing functions that are
expensive to evaluate. It builds a probabilistic
model of the objective function and uses it to

select the most promising points to evaluate next.
In our context, each “evaluation” is a quick
calculation using the artificial error vector e*
vector, not a physical experiment. BO would be
particularly interesting if the landscape were
highly complex, as it is extremely sample-
efficient.

The crucial point is that our framework makes it safe to
use any of these. The choice of ES, PSO, or BO becomes
a secondary engineering decision based on desired
convergence speed and problem complexity, rather than a
primary decision based on physical risk. While a detailed
benchmark comparing the performance of these
optimizers within our framework is a compelling
direction for future work, it falls outside the scope of this
paper’s primary goal: to introduce and validate the safety
concept itself. The success of the ES is sufficient to prove
that the fictitious landscape is not only safe but also
effectively searchable.

5. Conclusion

This paper has successfully introduced and validated
a novel framework that fundamentally redefines the
application of Al in control systems by resolving the
critical issue of safety. We have demonstrated that it is
possible to completely decouple the exploratory, trial-
and-error nature of Al optimization from the physical
plant. The “Data-Driven Safeguard” presented here
constructs a “fictitious fitness landscape” — a safe and
accurate virtual testbed for controller tuning — using
nothing more than a single set of measured data. Our
results empirically confirm that this virtual landscape is a
high-fidelity replica of the true performance landscape,
allowing an Al optimizer to find optimal solutions without
ever posing a risk to the real-world system.

The most striking aspect of this work is perhaps its
foundational simplicity. While the world pursues ever-
more-complex Al models to solve the control problem,
our research reveals that the key to unlocking safe
intelligent control was not hidden in complexity, but in a
change of perspective. By leveraging the principles of
Unfalsified Control to solve for an “artificial error” via a
simple linear system (Ax=b), we have turned what was
once a high-risk physical experiment into a safe and
deterministic computational problem. It is a classic case
of a “hidden in plain sight” solution, where the most
profound impact comes from the most elegant and
unexpected of sources.

The implications of this discovery are far-reaching.
This framework is optimizer-agnostic and can serve as a
universal safety layer for a wide array of Al-based
optimization techniques. It paves the way for the
confident application of intelligent controllers in fields
where safety is paramount, from industrial manufacturing
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and robotics to autonomous vehicles. Ultimately, the
“Data-Driven Safeguard” offers more than just a new
technique; it offers a new philosophy for building the next
generation of control systems — systems that are not only
intelligent but are, by their very design, fundamentally
safe.

6. Future Work

The success of the Data-Driven Safeguard
framework opens up numerous exciting avenues for
future research. We believe this work can serve as
foundation stepping stone for a new generation of safe
intelligent systems. We propose the following directions
for researchers interested in building upon this paradigm:

1. Extension to MIMO and Complex Systems: The
current work focused on a SISO system. A
significant and valuable next step would be to
extend the mathematical framework to handle
MIMO systems, which are common in industrial
processes. This would involve investigating the
structure of the resulting linear equations and the
scalability of the approach.

2. Online, Adaptive Safeguarding: This paper
demonstrated an offline approach where the
safeguard is  constructed once before
deployment. A highly impactful extension would
be to develop an online, adaptive version. This
would involve techniques for continuously
updating the fictitious landscape using real-time
data, allowing the Al to safely re-optimize the
controller in response to changing system
dynamics or environmental conditions, without
ever needing to inject risky exploratory signals.

3. Benchmarking and Integration with Advanced
Al Optimizers: While we proved the concept
with an Evolution Strategy, a comprehensive

study is warranted to benchmark the
performance  of  various  state-of-the-art
optimizers (e.g., Bayesian Optimization,

advances Reinforcement Learning agents like
PPO or SAC) on the safe landscape. The goal
would be to identify which optimizers are most
efficient at exploiting the information contained
within the data-driven safeguard.

4. Hardware-in-the-Loop (HIL) Validation: To
bridge the gap between simulation and real-
world application, the next logical step is to
deploy and wvalidate this framework on a
Hardware-in-the-loop (HIL) testbed or a pilot-
scale industrial process. This would provide
invaluable data on the real-world performance
and robustness of the safeguard under noisy
conditions and hardware limitations, confirming
its readiness for industrial adoption.

5. Formal Safety Guarantees: While our empirical
results show a near-perfect match between the
fictitious and real landscapes, a theoretical

investigation into providing formal
mathematical guarantees on the “closeness” of
the two landscapes under specific noise
andncertainty conditions would be a powerful
contribution, further solidifying the framework’s
reliability for the most critical of applications.
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