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Abstract

This paper presents the application of Long Short-
Term Memory (LSTM) and Gated-Recurrent-Unit (GRU)
models in order to investigate the effectiveness of LSTM-
based, GRU architecture. Bi-LSTM model is an extended
LSTM that processes the input data in the forward and
backward directions for improving the prediction
accuracy by utilizing the complete context of sequential
data. Using a dataset enriched with temporal features like
temperature, humidity, and wind speed, the model
architecture and hyper-parameters were optimized for
enhanced accuracy. The dataset comprises global time-
series data, with preprocessing focused on extracting
country-specific trends. Experiments demonstrate for
analyzing and forecasting in weather patterns over a 30-
day period. Experimental results show that the Bi-LSTM
model outperforms traditional models, achieving high
accuracy in temperature forecasting.

Keywords: Keras library, TensorFlow, LSTM, GRU,
BiLSTM, predictive analytics.

1. Introduction

Based on the deep learning improvement,
classification presents efficient ability in many field as
text feature and feature extraction. With the multi-
dimensional dataset, it can help to extract more features
and suitable for the text defection.

Main classification models based on deep learning
[1] that comprise with Gated Recurrent Unit (GRU), Long
Short-Term Memory (LSTM) and Bidirectional LSTM
(Bi-LSTM) [2]. LSTM networks is a modification of
recurrent neural network (RNN) that is particularly suited
for sequential data analysis due to their ability to handle
long-term dependencies.

As stated in text extraction, the authors in [3] have
used LSTM to extract the text information of fault defects
in power system by considering only the information
before the processed data. For example, the temperature
forecasting plays an essential role in various industries,
including agriculture, energy, and climate studies.

Traditional time-series prediction models as an
unidirectional LSTM has been used for temperature
prediction tasks. However, these models often struggle
with capturing long-term dependencies in sequential data.
In [4], LSTM-based model is designed to analyze and
forecast time-series data, specifically focusing on
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Fig. 1 GRU model [7]

COVID-19 confirmed case trends. It employs two
advanced recurrent neural network architectures: LSTM
and GRU. These architectures are particularly well-suited
for time-series prediction in terms of long-term
dependencies and temporal patterns in sequential data.

As stated about LSTM extended model, Bi-LSTM
takes two parts into account with a bidirectional
mechanism which processes the sequence both forwards
and backwards. It can improve predictions by leveraging
additional context. In [5], the authors have presented to
extract deep model used for a multitask classifier based on
a Bi-LSTM model to perform multitasking prediction
based on the decision fusion of the deep representations
extracted from time-series, demographics, and MRI
dataset. This model has been optimized to predict the
three tasks of Parkinson’s disease. In [6], Bi-LSTM
mechanism has been enhanced by learning from past and
future data for increasing diagnostic accuracy in
sequential clinical examinations in medicine.

As presented in the field of renewable energy, the
GRU model in [7] has been introduced for fault level
forecasting in grid system operators of renewable energy
source. This GRU-based model is modified the
relationship between system strength input level and
forecasting output. Results show that this GRU-based
model can show with higher accuracy in forecasting. In
[8], the GRU model has been used to forecast the
electrical load with less error than RNN and LSTM. In[9],
GRU with the particle swarm optimization learning
method has been presented to predict the short-term wind
power by updating its parameters.
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LSTM cell architecture

Fig. 2 LSTM cell architecture [10]
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Fig. 3 LSTM structure [11]

In this paper, the applications of a Bi-LSTM network
are explored for predicting mean temperature based on
historical data. The objective is to focus on applications
of LSTM-based architecture as LSTM, Bi-LSTM and
GRU for predictive analytics. The goal is to leverage these
models to predict future case trends using historical data,
allowing for insights into pandemic dynamics. The
workflow includes data preprocessing, visualization, and
model training using the Keras library, with
configurations optimized for accurate predictions.

This paper is organized as follows. First, the deep
learning models with LSTM, Bi-LSTM are provided
briefly in Section 2. Procedures of models are explained
in Section 3. Case studies and simulation results of each
case are presented in Section 4. Finally, Section 5 is
conclusion of this work.

2. Models
2.1 GRU model

Following [7], the GRU cell consists of the update
gate and reset gate. The data stream is processed using
two individual gates as an update gate (u;) and reset gate
(ry as shown in Fig. 1, where o denotes as sigmoid
function and tanh is tan hyperbolic function, respectively.
During this process, the hidden state (hy) is updated using
the update gate and reset gate considers the previous data.
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Fig. 5 Bi-GRU architecture [14]

2.2 LSTM model

Following [11], an LSTM cell consists of three main
components as a cell state, hidden state, and gates. These
LSTM gates are including with an input, forget, and
output gates, which regulate the information flow in and
out of the cell. A forget gate can decide what kind of
information from the previous cell state to ignore. While,
an input gate can determine which new information
should be stored in the cell state. Finally, an output gate
can control information is passed to next hidden state.

This architecture allows LSTMs to keep information
along periods suitable for sequential data. Fig. 2 shows a
core of LSTM that is the cell inside the blocks. This
LSTM cell has both feedback connections and back route
to the previous output [12].

LSTM structure is shown in Fig. 3 that consists of
three types of layer as an input layer, an output layer and
multiple LSTM hidden layers. Inside LSTM layer
comprises with LSTM cell shown in Fig. 2. As compared
with RNN architecture, the hidden layer of LSTM is a
gated cell which consists of three layers that can interact
with one another to produce the output along with the cell
state. These two things are then passed onto the next
hidden layer.
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Fig. 6 Prediction with un-optimized LSTM model.

2.3 Bi-LSTM model

Following [15], Bi-LSTM network is a type of RNN
that addresses the limitations of traditional neural
networks. It is tailored to effectively control the gradient
problem and capture long- term dependencies in
sequences by tracking data flow from previous and
current steps in the bidirectional of forward and backward
signal. Fig. 4 shows the Bi-LSTM architecture within
LSTM cell presented in Fig. 2.

2.4 Bi-GRU model

Bidirectional-GRU (Bi-GRU) network is an extended
of GRU that consists of forward GRU layer and reverse
GRU layer. It focuses to capture the dynamic features in
time-series data in order to improve the feature extraction.
Fig. 5 shows a diagram of Bi-GRU model within GRU
cell shown in Fig. 1.

3. Procedure and Experimental Results
3.1 Procedure of LSTM model

Weather prediction is a vital application of machine
learning, crucial for agriculture, disaster management,
and daily planning. LSTM network is generally suited for
sequential data analysis due to their ability to handle long-
term dependencies.

The experiment focuses on applying LSTM to predict
weather metrics over 30 days by historical data. Using a
dataset enriched with temporal features like temperature,
humidity, and wind speed, the model architecture and
hyper-parameters were optimized for enhanced accuracy.
The results demonstrate the utility of LSTM in capturing
temporal dependencies critical for weather forecasting,
albeit with challenges in long-term prediction reliability.

The LSTM model consisted of input layer with
processing features like temperature, humidity, and wind
speed. For hidden layers, three LSTM layers are each with
64 units followed by dropout for regularization. At output
layer, a dense layer is providing predictions for
temperature and other weather metrics. Hyper-parameters
were optimized to balance accuracy and computational
efficiency.
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Fig. 7 Prediction with optimized LSTM model.

3.1.1  Procedure of LSTM architecture

1) Data preparation: historical weather data was
normalized and split into training, validation, and
testing sets (70:15:15 ratio). Temporal sequences were
generated for LSTM training.

2) Model Training: The model was trained over 100
epochs with a batch size of 32, using the Adam
optimizer and a mean squared error ( MSE) loss
function.

3) Metric Evaluation: Root mean squared error (RMSE),
mean absolute error (MAE), and R-squared were used
to assess model performance.

3.1.2  Experimental Results

This experiment is separated to test with two models
as an un-optimized model compared with an optimized
model. Fig. 6 shows results of prediction compared with
true value with un-optimized LSTM model. It is achieved
an RMSE of 4.2°C and MAE of 3.5°C for temperature
prediction. Fig. 7 shows results of prediction compared
with true value with optimized LSTM model. While, an
optimized model can improve RMSE to 3.1°C and MAE
to 2.7°C by adjusting the learning rate and model
architecture.

For limitations of this experiment, while short-term
forecasts between 1-7 days were highly accurate, errors
increased for longer-term predictions.

3.1.3  Comparison
1) Alignment with True Values:

a. In the un-optimized model shown in Fig. 6, there
are noticeable deviations where the predictions lag
or overshoot the true values, particularly around
the peaks and troughs of the cycles.

b. In the optimized model shown in Fig. 7, the
predictions align more closely with the true values,
showing a significant reduction in both the
amplitude of errors and timing mismatches

2) Improved Consistency
Fig. 7 demonstrates smoother and more consistent
trends that better capture the shape of the true values.

This indicates that the optimized model can more

accurately learn and predict temporal dependencies.
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Fig. 8 Predicted compared with actual temperature by Bi-LSTM model
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Fig. 10 Predicted compared with actual temperature by Bi-GRU model
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Fig. 9 Model loss by Bi-LSTM model

3) Error Reduction
Comparing the two graphs visually, Fig. 7 shows
fewer large gaps between predictions and true values,
reflecting the improved RMSE from 4.2°C to 3.1°C
and MAE from 3.5°C to 2.7°C reported in the
experimental results.
3.1.4  Summary
In summary, the modified graph reflects a significant
improvement in the model's accuracy and predictive
reliability, making it the better representation of the
optimized LSTM model's performance. This directly
supports the claims made in the report about the benefits
of hyper-parameter optimization.

3.2 Procedure of Bi-LSTM model

The BIi-LSTM architecture includes several key
components that work together to improve performance
in predicting sequential data. First, at Bi-LSTM layers, a
Bi-LSTM processes the data in both directions of forward
and backward to capture more comprehensive patterns in
the time-series data. Then, a dropout layer with a rate of
0.2 is added to prevent overfitting by randomly dropping
neurons during training.

A dense layer is used with 25 units and ReLU
activation functions as the fully connected layer between
the LSTM output and the final prediction. For batch
normalization, this layer helps stabilize the learning
process and reduce overfitting by normalizing activations.

0 10 20 30 0
Epochs

Fig. 11 Model loss by Bi-GRU model

At the final layer, the output layer uses a linear
activation function to output the predicted temperature
value.

321
1)

Data pre-processing

Data Collection: Historical temperature data was
collected for the training process.
Normalization: The data was normalized using
MinMaxScaler to ensure consistent scaling and
faster convergence during training.

Data Splitting: The data was divided into
training (80%) and testing (20%) datasets.

2)

3)

3.22
1)

Model Building

The model was constructed using TensorFlow
and Keras with the following layers:
Bidirectional LSTM Layer: 128 units with L2
regularization.
Dropout Layer:
overfitting.
Dense Layer: A fully connected layer with 25
units and ReLU activation.

Batch Normalization Layer: To standardize
outputs before passing them to the next layer.
Output Layer: A dense layer with a single unit
and linear activation to predict the temperature
value.

2)

3) 20% dropout to mitigate
4)
5)

6)
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3.2.3  Training the Model

1) Optimization Algorithm: Adam optimizer was
used with a learning rate of 0.001.

2) Epochs: 50 epochs were set for training, with
early stopping used to prevent overfitting.

3) Loss Function: Mean Squared Error (MSE) was
chosen as the loss function to optimize for the
temperature prediction task.

3.24  Model Evaluation
The performance of model was evaluated using MAE,
MSE, RMSE, and R-squared (R?).

3.25  Experimental Results of Bi-LSTM model
1) Model training (1-50 epochs)

During training, the model exhibited a
significant decrease in loss from epoch 1 to epoch 16,
achieving a low validation loss by the end of training.
Notably, early stopping was triggered after epoch 21
to prevent overfitting.

2) Performance Metrics:

MAE is of 1.8788, MSE is of 5.7632, RMSE is
of 2.4007 and R2? is of 0.9032.

Fig. 8 shows these results indicate the model’s
effectiveness in predicting temperature with high
accuracy using Bi-LSTM. Fig. 9 shows the Bi-LSTM
model loss of training and validation loss.

3.2.6  Experimental Results of Bi-GRU model

In this experiment, modifications were made to the
original LSTM architecture by introducing a Bidirectional
GRU (Bi-GRU) layer instead of an LSTM layer. The data
input size was also adjusted to evaluate how changes in
the data and model architecture affect performance.

The modified model architecture is as follows.

1) A Bidirectional GRU Layer with 128 units.

2) A Dense Layer with 25 units and RelLU

activation.
3) A Dropout Layer to prevent overfitting.

Fig. 10 shows these results indicate the model’s
effectiveness in predicting temperature with high
accuracy by Bi-GRU model. Fig. 11 shows a graphical
representation of the training and validation losses across
the epochs. It can be seen that both the training and
validation losses decreased in parallel, with no significant
divergence, suggesting good model convergence and the
effectiveness of the regularization techniques used.

4. Discussions

The LSTM model successfully captured temporal
trends, particularly for short-term forecasts. However,
diminishing accuracy for extended predictions suggests
room for improvement through techniques such as
attention mechanisms or ensemble models.

5. Conclusion
This paper demonstrated the viability of LSTM for
weather forecasting, highlighting its strengths in short-
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term predictions. Future work could incorporate external
variables like satellite imagery or employ hybrid models
combining LSTM with convolutional networks. For Bi-
LSTM, the predictive performance of the original LSTM
model was compared with a modified version that
incorporated a Bi- GRU layer and additional regu-
larization. The results indicate that the modified model
provided improved accuracy in predicting mean
temperature, as shown by the lower error metrics of MAE,
MSE, RMSE and the higher R-squared value. Although
the training and validation losses were slightly higher in
the initial epochs, the modified model exhibited better
overall performance, with a noticeable increase in the
model's ability to generalize. This suggests that the added
complexity of the Bi- GRU layer and regularization
techniques enhanced the model's robustness.
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