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Abstract 
This paper presents the application of Long Short-

Term Memory (LSTM) and Gated-Recurrent-Unit (GRU) 

models in order to investigate the effectiveness of LSTM-

based, GRU architecture. Bi-LSTM model is an extended 

LSTM that processes the input data in the forward and 

backward directions for improving the prediction 

accuracy by utilizing the complete context of sequential 

data. Using a dataset enriched with temporal features like 

temperature, humidity, and wind speed, the model 

architecture and hyper-parameters were optimized for 

enhanced accuracy. The dataset comprises global time-

series data, with preprocessing focused on extracting 

country-specific trends. Experiments demonstrate for 

analyzing and forecasting in weather patterns over a 30-

day period.  Experimental results show that the Bi-LSTM 

model outperforms traditional models, achieving high 

accuracy in temperature forecasting. 

Keywords: Keras library, TensorFlow, LSTM, GRU, 

BiLSTM, predictive analytics. 

1. Introduction 
Based on the deep learning improvement, 

classification presents efficient ability in many field as 

text feature and feature extraction.  With the multi-

dimensional dataset, it can help to extract more features 

and suitable for the text defection.  

Main classification models based on deep learning 

[1] that comprise with Gated Recurrent Unit (GRU), Long 

Short-Term Memory (LSTM)  and Bidirectional LSTM 

( Bi- LSTM)  [ 2] .  LSTM networks is a modification of 

recurrent neural network (RNN) that is particularly suited 

for sequential data analysis due to their ability to handle 

long-term dependencies. 

As stated in text extraction, the authors in [3] have 

used LSTM to extract the text information of fault defects 

in power system by considering only the information 

before the processed data. For example, the temperature 

forecasting plays an essential role in various industries, 

including agriculture, energy, and climate studies. 

 Traditional time-series prediction models as an 

unidirectional LSTM has been used for temperature 

prediction tasks. However, these models often struggle 

with capturing long-term dependencies in sequential data. 

In [4], LSTM-based model is designed to analyze and 

forecast time-series data, specifically focusing on  

 
 

Fig. 1 GRU model [7] 

 

COVID-19 confirmed case trends. It employs two 

advanced recurrent neural network architectures: LSTM 

and GRU. These architectures are particularly well-suited 

for time-series prediction in terms of long-term 

dependencies and temporal patterns in sequential data. 

As stated about LSTM extended model, Bi-LSTM 

takes two parts into account with a bidirectional 

mechanism which processes the sequence both forwards 

and backwards. It can improve predictions by leveraging 

additional context. In [5], the authors have presented to 

extract deep model used for a multitask classifier based on 

a Bi-LSTM model to perform multitasking prediction 

based on the decision fusion of the deep representations 

extracted from time-series, demographics, and MRI 

dataset. This model has been optimized to predict the 

three tasks of Parkinson’s disease. In [6], Bi-LSTM 

mechanism has been enhanced by learning from past and 

future data for increasing diagnostic accuracy in 

sequential clinical examinations in medicine.  

As presented in the field of renewable energy, the 

GRU model in [7] has been introduced for fault level 

forecasting in grid system operators of renewable energy 

source. This GRU-based model is modified the 

relationship between system strength input level and 

forecasting output. Results show that this GRU-based 

model can show with higher accuracy in forecasting. In 

[8], the GRU model has been used to forecast the 

electrical load with less error than RNN and LSTM. In [9], 

GRU with the particle swarm optimization learning 

method has been presented to predict the short-term wind 

power by updating its parameters.   
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Fig. 2 LSTM cell architecture [10] 

 

 
 

Fig. 3 LSTM structure [11] 

 

In this paper, the applications of a Bi-LSTM network 

are explored for predicting mean temperature based on 

historical data. The objective is to focus on applications 

of LSTM-based architecture as LSTM, Bi-LSTM and 

GRU for predictive analytics. The goal is to leverage these 

models to predict future case trends using historical data, 

allowing for insights into pandemic dynamics. The 

workflow includes data preprocessing, visualization, and 

model training using the Keras library, with 

configurations optimized for accurate predictions.  

This paper is organized as follows. First, the deep 

learning models with LSTM, Bi-LSTM are provided 

briefly in Section 2. Procedures of models are explained 

in Section 3. Case studies and simulation results of each 

case are presented in Section 4. Finally, Section 5 is 

conclusion of this work. 

2. Models 
2.1 GRU model 

Following [7] , the GRU cell consists of the update 

gate and reset gate.  The data stream is processed using 

two individual gates as an update gate (ut)  and reset gate 

( rt)  as shown in Fig.  1, where  denotes as sigmoid 

function and tanh is tan hyperbolic function, respectively. 

During this process, the hidden state (ht) is updated using 

the update gate and reset gate considers the previous data.  

 

 
 

Fig. 4 Bi-LSTM architecture [13] 

 
 

 
 

Fig. 5 Bi-GRU architecture [14] 

 
 

2.2 LSTM model 

Following [11], an LSTM cell consists of three main 

components as a cell state, hidden state, and gates. These 

LSTM gates are including with an input, forget, and 

output gates, which regulate the information flow in and 

out of the cell. A forget gate can decide what kind of 

information from the previous cell state to ignore. While, 

an input gate can determine which new information 

should be stored in the cell state. Finally, an output gate 

can control information is passed to next hidden state.  

This architecture allows LSTMs to keep information 

along periods suitable for sequential data. Fig. 2 shows a 

core of LSTM that is the cell inside the blocks. This 

LSTM cell has both feedback connections and back route 

to the previous output [12]. 

LSTM structure is shown in Fig.  3 that consists of 

three types of layer as an input layer, an output layer and 

multiple LSTM hidden layers.  Inside LSTM layer 

comprises with LSTM cell shown in Fig. 2. As compared 

with RNN architecture, the hidden layer of LSTM is a 

gated cell which consists of three layers that can interact 

with one another to produce the output along with the cell 

state.  These two things are then passed onto the next 

hidden layer. 
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Fig. 6 Prediction with un-optimized LSTM model. 

 

2.3 Bi-LSTM model 

Following [15] , Bi-LSTM network is a type of RNN 

that addresses the limitations of traditional neural 

networks.  It is tailored to effectively control the gradient 

problem and capture long- term dependencies in 

sequences by tracking data flow from previous and 

current steps in the bidirectional of forward and backward 

signal.  Fig.  4 shows the Bi- LSTM architecture within 

LSTM cell presented in Fig. 2.  

2.4 Bi-GRU model 

Bidirectional-GRU (Bi-GRU) network is an extended 

of GRU that consists of forward GRU layer and reverse 

GRU layer.  It focuses to capture the dynamic features in 

time-series data in order to improve the feature extraction. 

Fig.  5 shows a diagram of Bi-GRU model within GRU 

cell shown in Fig. 1. 

3. Procedure and Experimental Results 

3.1 Procedure of LSTM model  

Weather prediction is a vital application of machine 

learning, crucial for agriculture, disaster management, 

and daily planning. LSTM network is generally suited for 

sequential data analysis due to their ability to handle long-

term dependencies.  

The experiment focuses on applying LSTM to predict 

weather metrics over 30 days by historical data.  Using a 

dataset enriched with temporal features like temperature, 

humidity, and wind speed, the model architecture and 

hyper-parameters were optimized for enhanced accuracy. 

The results demonstrate the utility of LSTM in capturing 

temporal dependencies critical for weather forecasting, 

albeit with challenges in long-term prediction reliability. 

The LSTM model consisted of input layer with 

processing features like temperature, humidity, and wind 

speed. For hidden layers, three LSTM layers are each with 

64 units followed by dropout for regularization. At output 

layer, a dense layer is providing predictions for 

temperature and other weather metrics. Hyper-parameters 

were optimized to balance accuracy and computational 

efficiency. 

 

 
Fig. 7 Prediction with optimized LSTM model. 

 

3.1.1 Procedure of LSTM architecture 

1) Data preparation:  historical weather data was 

normalized and split into training, validation, and 

testing sets (70:15:15 ratio). Temporal sequences were 

generated for LSTM training.   

2) Model Training:  The model was trained over 100 

epochs with a batch size of 32, using the Adam 

optimizer and a mean squared error ( MSE)  loss 

function. 

3) Metric Evaluation: Root mean squared error (RMSE), 

mean absolute error (MAE), and R-squared were used 

to assess model performance. 

3.1.2 Experimental Results 

This experiment is separated to test with two models 

as an un-optimized model compared with an optimized 

model. Fig. 6 shows results of prediction compared with 

true value with un-optimized LSTM model. It is achieved 

an RMSE of 4.2°C and MAE of 3.5°C for temperature 

prediction. Fig. 7 shows results of prediction compared 

with true value with optimized LSTM model. While, an 

optimized model can improve RMSE to 3.1°C and MAE 

to 2.7°C by adjusting the learning rate and model 

architecture.  

For limitations of this experiment, while short-term 

forecasts between 1-7 days were highly accurate, errors 

increased for longer-term predictions. 
 

3.1.3 Comparison  

1) Alignment with True Values:  

a. In the un-optimized model shown in Fig. 6, there 

are noticeable deviations where the predictions lag 

or overshoot the true values, particularly around 

the peaks and troughs of the cycles. 

b. In the optimized model shown in Fig. 7, the 

predictions align more closely with the true values, 

showing a significant reduction in both the 

amplitude of errors and timing mismatches 

2) Improved Consistency 

Fig. 7 demonstrates smoother and more consistent 

trends that better capture the shape of the true values. 

This indicates that the optimized model can more 

accurately learn and predict temporal dependencies. 

 



การประชุมวชิาการทางวศิวกรรมไฟฟ้า คร้ังท่ี 48  
The 48th Electrical Engineering Conference (EECON-48)  
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่  

 

 
Fig. 8 Predicted compared with actual temperature by Bi-LSTM model 

 

 
Fig. 9 Model loss by Bi-LSTM model 

 

3) Error Reduction 

Comparing the two graphs visually, Fig. 7 shows 

fewer large gaps between predictions and true values, 

reflecting the improved RMSE from 4.2°C to 3.1°C 

and MAE from 3.5°C to 2.7°C reported in the 

experimental results. 

3.1.4 Summary 

In summary, the modified graph reflects a significant 

improvement in the model's accuracy and predictive 

reliability, making it the better representation of the 

optimized LSTM model's performance.  This directly 

supports the claims made in the report about the benefits 

of hyper-parameter optimization. 

 

3.2 Procedure of Bi-LSTM model 

The Bi-LSTM architecture includes several key 

components that work together to improve performance 

in predicting sequential data. First, at Bi-LSTM layers, a 

Bi-LSTM processes the data in both directions of forward 

and backward to capture more comprehensive patterns in 

the time-series data. Then, a dropout layer with a rate of 

0.2 is added to prevent overfitting by randomly dropping 

neurons during training.  

A dense layer is used with 25 units and ReLU 

activation functions as the fully connected layer between 

the LSTM output and the final prediction. For batch 

normalization, this layer helps stabilize the learning 

process and reduce overfitting by normalizing activations.  

 
Fig. 10 Predicted compared with actual temperature by Bi-GRU model 

 

 
Fig. 11 Model loss by Bi-GRU model 

 

 

At the final layer, the output layer uses a linear 

activation function to output the predicted temperature 

value. 

 

3.2.1 Data pre-processing 

1) Data Collection: Historical temperature data was 

collected for the training process.  

2) Normalization: The data was normalized using 

MinMaxScaler to ensure consistent scaling and 

faster convergence during training.  

3) Data Splitting: The data was divided into 

training (80%) and testing (20%) datasets. 

 

3.2.2 Model Building 

1) The model was constructed using TensorFlow 

and Keras with the following layers: 

2) Bidirectional LSTM Layer: 128 units with L2 

regularization. 

3) Dropout Layer: 20% dropout to mitigate 

overfitting. 

4) Dense Layer: A fully connected layer with 25 

units and ReLU activation. 

5) Batch Normalization Layer: To standardize 

outputs before passing them to the next layer. 

6) Output Layer: A dense layer with a single unit 

and linear activation to predict the temperature 

value. 
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3.2.3 Training the Model 

1) Optimization Algorithm: Adam optimizer was 

used with a learning rate of 0.001.  

2) Epochs: 50 epochs were set for training, with 

early stopping used to prevent overfitting.  

3) Loss Function: Mean Squared Error (MSE) was 

chosen as the loss function to optimize for the 

temperature prediction task. 

3.2.4 Model Evaluation 

The performance of model was evaluated using MAE, 

MSE, RMSE, and R-squared (R²). 

3.2.5 Experimental Results of Bi-LSTM model 

1) Model training (1-50 epochs) 

During training, the model exhibited a 

significant decrease in loss from epoch 1 to epoch 16, 

achieving a low validation loss by the end of training. 

Notably, early stopping was triggered after epoch 21 

to prevent overfitting.  

2) Performance Metrics:  

MAE is of 1.8788, MSE is of 5.7632, RMSE is 

of 2.4007 and R² is of 0.9032.  

Fig. 8 shows these results indicate the model’s 

effectiveness in predicting temperature with high 

accuracy using Bi-LSTM. Fig. 9 shows the Bi-LSTM 

model loss of training and validation loss. 

3.2.6 Experimental Results of Bi-GRU model 

In this experiment, modifications were made to the 

original LSTM architecture by introducing a Bidirectional 

GRU (Bi-GRU) layer instead of an LSTM layer. The data 

input size was also adjusted to evaluate how changes in 

the data and model architecture affect performance. 

The modified model architecture is as follows. 

1) A Bidirectional GRU Layer with 128 units. 

2) A Dense Layer with 25 units and ReLU 

activation. 

3) A Dropout Layer to prevent overfitting. 

 

Fig. 10 shows these results indicate the model’s 

effectiveness in predicting temperature with high 

accuracy by Bi-GRU model. Fig. 11 shows a graphical 

representation of the training and validation losses across 

the epochs. It can be seen that both the training and 

validation losses decreased in parallel, with no significant 

divergence, suggesting good model convergence and the 

effectiveness of the regularization techniques used. 

4. Discussions  

The LSTM model successfully captured temporal 

trends, particularly for short-term forecasts. However, 

diminishing accuracy for extended predictions suggests 

room for improvement through techniques such as 

attention mechanisms or ensemble models. 

 

5. Conclusion 

This paper demonstrated the viability of LSTM for 

weather forecasting, highlighting its strengths in short-

term predictions.  Future work could incorporate external 

variables like satellite imagery or employ hybrid models 

combining LSTM with convolutional networks.  For Bi-

LSTM, the predictive performance of the original LSTM 

model was compared with a modified version that 

incorporated a Bi- GRU layer and additional regu-

larization.  The results indicate that the modified model 

provided improved accuracy in predicting mean 

temperature, as shown by the lower error metrics of MAE, 

MSE, RMSE and the higher R-squared value.  Although 

the training and validation losses were slightly higher in 

the initial epochs, the modified model exhibited better 

overall performance, with a noticeable increase in the 

model's ability to generalize. This suggests that the added 

complexity of the Bi- GRU layer and regularization 

techniques enhanced the model's robustness. 
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