v 4
mstlszauinnismainanssy Tl adedi 48
The 48" Electrical Engineering Conference (EECON-48)

ui 1921 ngASM oY 2568 a1 Tsausuysni1 e dadealni

Image Recognition System using Generic YOLOv5 Weight Model and Roboflow
for Pre-processed Dataset

Suchada Sitjongsataporn'“and Kornika Moolpho?

'Department of Electronic Engineering, School of Electrical and Electronic Engineering (SEE)
Mahanakorn University of Technology, Nongchok, Bangkok, Thailand, ssuchada@mut.ac.th*
2Department of Mechatronic Engineering, Mahanakorn Institute of Innovation (MII)
Mahanakorn University of Technology, Nongchok, Bangkok, Thailand, kornika@mut.ac.th

Abstract

This paper presents the generic Yolov5 weight model
for image recognition system by using pre-processed
dataset. We focus on the YOLOVS model and Roboflow
for case studies. First, YOLOvS5 model is used for
importance of preprocessing training sets, and examples
of COCO in the 128 data set. Second, Roboflow model is
presented for pre-processed data. By the utilization of
Roboflow, an advanced computer vision platform, to
differentiate between raccoons and prairie dogs. The
implementation of YOLOVS and Roboflow in these cases
that demonstrate the potential of AI technologies in
differentiating image recognition.

Keywords: YOLOvV5 model,
recognition, COCO128 dataset

Roboflow, Image

1. Introduction

Image Classification is a fundamental task in vision
recognition that aims to understand and categorize an
image as a whole under a specific label [1]. Unlike object
detection, which involves classification and location of
multiple objects within an image, image classification
typically pertains to single-object images.

First of all, Roboflow is a Computer Vision developer
framework for better data collection to preprocessing, and
model training techniques [2]. Roboflow has public
datasets readily available to users and has access for users
to upload their own custom data also. Roboflow accepts
various annotation formats. In data preprocessing, there
are steps involved such as image orientations, resizing,
contrasting, and data augmentations. YOLOVS, as one of
the most advanced real-time object detection frameworks,
is the cornerstone of this project. The YOLO (You Only
Look Once) series occupies an important position in the
field of object detection with its excellent speed and
accuracy [3]. YOLOVS further optimizes the performance
and flexibility of the model, enabling it to process
complex image data quickly and accurately, making it
suitable for a wide range of practical application
scenarios.

Secondly, data preprocessing plays a crucial role in
our project. In order to enable the YOLOvVS model to
effectively learn and recognize objects, we carefully
preprocessed the training data set. This includes steps
such as image resizing [4], format standardization [5],
data enhancement [6], and more. Through these
preprocessing operations, we ensure that the data received

+Corresponding Author

by the model reflects the diversity of the real world and
meets the technical requirements of the training process.

Finally, the COCO128 dataset plays a key role in the
examples. COCO (Common Objects in Context) [7] is a
widely used large-scale image data set that contains a
variety of object categories and is very suitable for
training deep learning models. In our project, we used the
COCO128 subset, which is a streamlined version of the
COCO dataset and contains 128 selected images and their
corresponding annotations. This data set not only provides
rich and varied training samples, but also helps us
efficiently train and optimize our models with limited
resources.

In summary, the efficiency of the YOLOvVS5 model,
coupled with the carefully designed pre-processing
process and the diversity of the COCO128 data set,
together form the core of this image recognition project.
We explore the utilization of Roboflow, an advanced
computer vision platform, to differentiate between
raccoons and prairie dogs for experiments. The
implementation of Roboflow in this case study
demonstrates the potential of Al technologies in
differentiating different species of animals. Through the
combined use of these technologies and resources, we can
effectively achieve high-precision image recognition,
laying a solid foundation for subsequent application
development

B IMages o e es P T———

AQUSEOEEE
ERERENSa
EN@=EREF
doaEREaN

Fig. 1 Roboflow universe [8]




m3tszyInmsmadnnssylilih afedi 48
The 48" Electrical Engineering Conference (EECON-48)

Ui 19-21 neAINIoY 2568 1 T3ausuisni1 San e lni

200mm

Two-Stage Detector

One-Stage Detector
Neck Dense Prediction

Backbone

-
Vay.

—

Sparse Prediction

7

\Waw.

Fig. 2 YOLO architecture [9]

2. Roboflow universe

Roboflow Universe [8] is a repository of more than
110,000 open-source datasets in Fig.1 that you can use in
your projects at https://universe.roboflow.com/.  All
datasets are containing everything from annotated cracks
in concrete to plant images with disease annotations.
Preparing a custom dataset using Roboflow as follows:
Step 1: Creating project

Before you start, you need to create a Roboflow
account. Once you do that, you can create a new project
in the Roboflow dashboard. Keep in mind to choose the
right project type. In our case, Object Detection.

Step 2: Uploading images.

Next, add the data to your newly created project. You
can do it via API or through our web interface. If you drag
and drop a directory with a dataset in a supported format,
the Roboflow dashboard will automatically read the
images and annotations to ether.

Step 3: Labeling

If you only have images, you can label them in
Roboflow Annotate.

Step 4: Generate new dataset version

Now that we have our images and annotations added,
we can generate a Dataset Version. When Generating a
new data version, you may elect to add preprocessing and
augmentations. This step is completely optional, however,
it can allow you to significantly improve the robustness of
your model.

Step 5: Exporting dataset

Once the dataset version is generated, we have a
hosted dataset we can load directly into our notebook for
easy training. Click Export and select the YOLO v5
PyTorch dataset format.

3. Methodology
3.1 YOLOVS5 model

YOLOVS is a kind of real-time object detection
model of computer vision models. YOLOv5 has been
implemented in PyTorch and it has known for its high
inference speed and accuracy, making it suitable for
various real-time applications such as surveillance,
autonomous vehicles, and image recognition.

[BO0000000S8S 100 gl 16098P000581 .jpg

i

Fig. 3 Example of dataset from YOLOv5 model

Architecture of YOLOVS5 [9] consists of three main
parts named as backbone, neck and head following in Fig.
2 as follows. First, CSPDarknet model (Backbone) is used
to extract features from the input image. Then, PANet
(Neck) is blended features from different scales to
enhance detection capabilities for various sizes of object.
Finally, YOLO Layer (Head) is used to predict bounding
boxes, objectness scores, and class probabilities. An
example of dataset from YOLOvVS model is presented in
Fig. 3.

3.2 Roboflow model

We gathered various pictures featuring raccoons and
prairie dogs from different locations. We utilized
Roboflow to annotate and prepare these images for
training. Subsequently, we fed this data into Roboflow's
machine learning engine, making adjustments to guide the
model in distinguishing between raccoons and prairie
dogs. We repeated this iterative process until achieving
the desired accuracy. Essentially, we relied on technology
to ensure this model could effectively discern which
species of animals.



v 4
mstlszauinnismainanssy Tl adedi 48
The 48" Electrical Engineering Conference (EECON-48)

Ui 1921 ngASn ey 2568 a1 Tsansuys i1 anFadealni

200mm

import numpy as np

import torch

import toreh.distributed as dist
import torch.nn as nn

import yaml

from torch.optim import 1lr_scheduler
from tqdm import tqdm

[ ]

0s.environ[“617_pY

os.environ['KMP_DU

SH*] = "quiet®
B_OK']=!True*

FILE = Path(__file__).resolve()
ROOT = FILE.parents[8] # YOLOVS root directory
if str(ROOT) not in sys.path:

Fig. 4 YOLOVS setup

3. Data preparation and Model training

3.1 Data preparation
Data preparation for simulation comprises with three
steps as
1) Data Sourcing: Description of the dataset used,
including source, size, and nature of the images.
2) Preprocessing  Steps: Outline of image
preprocessing techniques like resizing,
normalization, and augmentation.
3) Dataset Splitting: Information on how the dataset
is divided into training, validation, and testing sets.

3.2 Model training

1) Parameter Setting: Details of the model
parameters, such as learning rate, batch size, and

number of epochs.

2) Training Process: A step-by-step description of
the training procedure, including any fine-tuning
or optimization techniques used.

3) Graphs and Visuals: Reference to inserted graphs
or charts that display the training progress, such as
loss curves and accuracy metrics over epochs.

4. Simulation Results

4.1 Case study# 1: COCQO128 dataset

The following datasets shown in Fig. 3 are some
pictures and video results of preprocessing data and
training  using general model weights from
https: // www. bilibili. com/ video/ BVINN4 y127NQ/ ?
vd_source= edb9ce84d85f6b820f3362577477b9cl. For
the COCO128 data set, you can decompress from
https://ultralytics.com/assets/coco128.zip.

Due to timeliness, YOLOvV5 will cause some
problems when running this version. The following is a
method to solve the problem by Setting the two
environment variables as shown in Fig.4.

1) os.environ["GIT_PYTHON_REFRESH"] = "quiet"

train/box_loss train/obj_loss train/cls_loss

. ——— results
0.0350
0.060 smooth

25 50 75 00 25 50 75 00 25 50 75

val/box_loss val/obj_loss val/cls_loss

Fig. 5 Results of loss function from YOLOVS

2) os.environ| KMP DUPLICATE LIB OK'] ='True'
solves different problems as follows.
2.1) os. environ[ " GIT PYTHON_ REFRESH" ]

"quiet"

1) This environment variable is for the
GitPython library. GitPython is a Python
library for interacting with Git repositories.

2) Setting this variable to "quiet" can prevent
GitPython from printing unnecessary log
information during use, allowing it to run
more quietly in some cases without
interfering with the main program output.

2.2) os.environ[' KMP_DUPLICATE LIB OK'] =

"True'

1) This environment variable is related to
Intel's Math Kernel Library (MKL). MKL is
a high-performance library commonly used
for scientific computing.

2) This environment variable is an unofficial
solution for handling library conflicts that
may arise in certain situations.

The generic YOLOvVS weighted parameter is used to
specify the path to the model weight file. This is usually a
pre- trained model or the output of a previous training
cycle. So, we use the universal model weights
downloaded before running. For general models, only 100
iterations are needed to achieve good results. .

Performance metrics of YOLOvVS model are shown in
Figs. 5-6. About loss function (loss in Fig. 5), after the
10th iteration, the ‘box_loss’, ‘obj loss’ and ‘cls loss’ of
training and verification show an overall downward trend.
In the 20th iteration, the loss function starts out high, but
then also drops significantly. In particular, ‘cls loss’
decreases significantly in both training and validation,
indicating that the model has greatly improved in
classification.



v 4
mstlszauinnismainanssy Tl adedi 48
The 48" Electrical Engineering Conference (EECON-48)

Ui 1921 ngASn ey 2568 a1 Tsansuys i1 anFadealni

200mm

metrics/precision metrics/recall

06

04

02

0.0
0.0 25 50 75 0.0 25 50 75

metrics/mAP_0.5 metrics/mAP_0.5:0.95

0.0 25 50 75 0.0 25 50 75

Fig. 6 Results of precision and recall from YOLOv5

Performance of accuracy metrics of YOLOvVS model
are presented in Fig. 6 in term of precision, recall, mAP.
After the 10th iteration, the precision and recall indicators
show certain fluctuations on the training set, but the
overall trend is upward. The mAP indicator also shows an
upward trend. After the 20th iteration, precision
performance stabilized and remained at a high level, while
recall declined at some points, but eventually rebounded.
Both ‘mAP 0.5” and ‘mAP_0.5:0.95" show a clear
upward trend, indicating that the overall detection
performance of the model has been improved.

4.2 Case study# 2: Roboflow

We utilized Roboflow to annotate and prepare these
images for training. Subsequently, we fed this data into
Roboflow's machine learning engine, making adjustments
to guide the model in distinguishing between raccoons
and prairie dogs shown in Fig.7.

The model demonstrated a noteworthy accuracy
range, with precision, recall, and F1 score metrics
consistently falling within the 70- 80% range. These
metrics confirm the model's effectiveness in
distinguishing between raccoons and prairie dogs,
providing a reliable performance benchmark in Fig. 8.

Despite achieving commendable accuracy within the
specified range, it's crucial to address the variability in
results. The model's performance, while consistent, may
still exhibit diversity that could benefit from further
refinement to enhance overall reliability in species
differentiation.

ect-detection-project-ic3zb/1

sy ; Tt e

Samples from Test Set

L] Jcafid

Paste YouTube or Image URL

&

@ Try with webcam

Fig 7 Results and performance of Roboflow model

Fig 8 Confusion matrix from Roboflow model

5. Discussion and Challenge

The model faces challenges in adapting to diverse
environments, particularly when there are changes in
lighting and overall surroundings as shown in Fig. 8.
Despite achieving commendable accuracy within the
specified range, there are instances where it might still act
a bit different in the real world.

This is evident in instances where the Al highlighted
the ground, mistakenly identifying it as a prairie dog. It
just goes to show how tricky dealing with wildlife can be
and emphasizes the importance of continually refining the
model to ensure optimal performance across various
conditions.

6. Conclusions

In conclusion, the application of Roboflow in
distinguishing raccoons and prairie dogs highlights the
potential of Al technologies. The methodology, which
involves diverse image collection and repetitive training,
proves effective. Despite commendable accuracy ( 70-
80% ), challenges emerged, particularly in the model's
adaptation to varied environments, as seen in
misidentifying the ground as a prairie dog. It's essential to
address these challenges for improved reliability in real
world situations. Continuous refinement is crucial going
forward. This case study reveals both the capabilities and
challenges of AL. As technology progresses tackling real
world challenges is essential to maximize the advantages
of Al recognition.



msdszainmemedmnssu i afadi 48

The 48" Electrical Engineering Conference (EECON-48)

Ui 1921 woaTney 2568 & T3 ausuyswi dandamesli

References

(1]

(2]

(3]

(4]

(3]

L. Cao, Z. Ma, Q. Hu and Z. Xia, "Small Sample
Image Classification for Synthetic Aperture Sonar
Based on Super-Resolution Reconstruction and
Improved Self-supervised Contrastive Learning,"
IEEFE Sensors Journal, July 2025.

Roboflow, “Everything you need to build and deploy
computer vision applications.” Available from
https://roboflow.com/, Access on 9 August 2025.
PyTorch, “YOLOV5”, Available from
https://pytorch.org/hub/ultra lytics_yolov5/, Access
on 9 August 2025.

A. K. Akhmedova, I. A. Gavrilov, A. N. Puziy, V. A.
Gubenko and A. R. Radik, "Efficiency Estimation of
Video Compression with a Bidirectional TV Images
Resizing," 2024 IEEE 25th International Conference
of Young Professionals in Electron Devices and
Materials (EDM), Altai, Russian Federation, pp.
2390-2394, 2024.

B. Hyseni and L. A. Bexheti, "The Impact of Open
Data Standardization on the Successful Management
of e-Government," 2023 12th Mediterrancan
Conference on Embedded Computing (MECO),
Budva, Montenegro, pp. 1-8, 2023.

(6]

(7]

(8]

(9]

S. Shao and C. Xiao, "A Data Enhancement Method
for Non-Autoregressive Data Models Based on Joint
Multi-Intent Detection and Slot Filling," 2024
International Conference on Electronics and Devices,
Computational Science (ICEDCS), Marseille,
France, pp. 504-509, 2024.

COCO, “Common Object in Context”, Available
from https://cocodataset.org/#home, Access on 9
August 2025.

Roboflow, “Explore the Roboflow Universe: The
world's largest collection of open source computer
vision datasets and APIs.”, Available from
https://universe.roboflow.com/, Access on 9 August
2025.

A. Bochkovskiy, C.Y. Wang, H. Y. Mark Liao,
“YOLOv4: Optimal Speed and Accuracy of Object
Detection”, arXiv:2004.10934v1 [cs.CV] 23 Apr
2020, Available from https:/arxiv.org/pdf/2004.
10934, Access on 9 August 2025.




