v
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 oA ey 2568 o T3 ausuys 1 e dadoalvi

200mm

A Lightweight Object-Oriented MicroPython Firmware for LINE Beacon Broadcasting
on ESP32

Supakit Nakpomchin?, Pichaya Sookplung?, Somkiat Chormuan? and Suphitcha Chanrueang?

1Department of Information Technology, Faculty of Science and Technology, Nakhon Pathom Rajabhat
University, Thailand, supakrid@webmail.npru.acth pichaya@webmailnpru.ac.th
2Department of Software Engineering, Faculty of Science and Technology, Nakhon Pathom Rajabhat University,
Thailand, tko@webmail.npru.ac.th suphitcha@webmail npru.ac.th®

Abstract

This paper presents a lightweight, object-oriented
MicroPython firmware framework for broadcasting LINE
Beacon packets on ESP32. The framework enhances
modularity, reusability, and maintainability compared
with conventional C/C++ implementations, which are
often complex and time-consuming. The design
encapsulates BLE advertising management and LINE
Beacon payload generation into two reusable classes—
BLEManager and LineBeacon—ensuring protocol
compliance with the 3-AD format. Experimental
validation confirmed stable operation, with advertising
intervals consistently maintained at ~63 ms, packet
accuracy above 97%, and RSSI values around —60 to —65
dBm at distances of 5-10 m. Memory analysis showed a
modest overhead of 10-11 KB, acceptable for ESP32-
based 10T deployments. These results demonstrate that
the proposed firmware framework offers a practical and
efficient foundation for proximity-based services,
balancing ease of development with reliable performance.

Keywords: MicroPython, ESP32, Bluetooth Low Energy
(BLE), Firmware Framework, LINE Beacon, 10T

1. Introduction

The Internet of Things (loT) has transformed
embedded systems by enabling real-time sensing,
actuation, and communication in domains such as
healthcare, smart cities, and industrial automation [1,2].
The ESP32 microcontroller has emerged as a popular
platform for 10T prototyping due to its integrated Wi-Fi
and Bluetooth Low Energy (BLE) modules, dual-core
processor, and cost efficiency [3]. Traditionally, firmware
for such platforms is developed in C/C++, which—while
performant—often results in longer development cycles,
limited modularity, and a steep learning curve.

MicroPython, a lightweight implementation of
Python for microcontrollers, offers a more accessible and
iterative development environment [4,5]. When combined
with object-oriented programming (OOP) principles, it
enables reusable, scalable, and maintainable firmware
designs [6]. However, few existing works leverage
MicroPython and OOP to create modular BLE
broadcasting frameworks for real-world applications.

Meanwhile, LINE Beacon, a BLE-based proximity
protocol by LINE Corporation, has gained adoption in
Southeast Asia for location-aware services in retail,
transit, and tourism [7,8]. Despite its potential, there is a

«Corresponding Author

lack of lightweight, open-source firmware specifically
tailored to broadcast LINE Beacon packets on low-cost
microcontrollers using high-level languages.

This work addresses that gap by presenting a
lightweight, object-oriented MicroPython firmware
framework for LINE Beacon broadcasting on the ESP32.
The framework encapsulates BLE operations and payload
generation into two reusable classes, BLEManager and
LineBeacon, ensuring protocol compliance,
maintainability, and rapid prototyping. Experimental
validation confirms stable signal performance, >97%
packet accuracy, and modest resource usage, making the
proposed solution well-suited for scalable, proximity
based 10T deployments.

2. Literature Review

Firmware development for embedded systems has
evolved substantially over the last decade. Early
approaches  predominantly relied on low-level
programming in C/C++, which provided performance and
control but lacked modularity and maintainability,
particularly in large-scale or fast-evolving loT
deployments [9]

Between 2018 and 2020, developers and researchers
began exploring high-level alternatives that could
improve productivity without severely compromising
performance. MicroPython emerged during this period as
a lightweight implementation of Python tailored for
microcontrollers such as the ESP32. Its rapid prototyping
capability, simplified syntax, and REPL-based interaction
proved particularly attractive in educational, research, and
low-power loT applications [9,10]. However, most
implementations remained procedural and lacked long-
term scalability. Comparative studies by Plauska et al. [1]
and lonescu et al. highlighted these limitations.

From 2020 onward, attention shifted toward
embedding  object-oriented  programming  (OOP)
principles into firmware development, even on
constrained hardware. Researchers such as Maclean et al.
[11]and Avellaneda et al. [12] emphasized the advantages
of modular firmware design based on encapsulation and
reusability, suggesting that such patterns are well-suited
for the evolving requirements of embedded loT systems.

In parallel, Bluetooth Low Energy (BLE) gained
traction as the de facto wireless protocol for low-power,
short-range communication. By 2021, BLE was widely
adopted in smart devices for applications such as indoor
positioning, proximity services, and occupancy detection



_
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 WA ey 2568 o T3 ausuys i e dadoalni

[13]. With the rollout of BLE 5.0, improvements in range
and stability made it even more practical for real-world
environments. Around this time, LINE Corporation
introduced LINE Beacon, a BLE-based broadcast
protocol designed for proximity interactions in retail,
transportation, and tourism. While its application
potential was clear, few firmware-level frameworks were
developed to support LINE Beacon broadcasting,
particularly on microcontrollers [14].

From 2022 to the present, developers have continued
to adopt the ESP32 as a BLE-capable microcontroller due
to its affordability and built-in connectivity. However,
BLE implementation practices are still mostly C/C++
based via the ESP-IDF or Arduino toolchains, which can
be difficult to scale or modify. MicroPython support for
BLE has improved but remains fragmented, with few
reusable frameworks and little attention given to
standardized broadcasting protocols like LINE Beacon
[7,15]. Raihan et al. [16] demonstrated BLE-based
presence monitoring on the ESP32, further highlighting
its reliability, but stopped short of adopting object-
oriented MicroPython design.

To date, no unified approach has been proposed that
combines MicroPython, OOP firmware design, and LINE
Beacon broadcasting on the ESP32, despite their proven
individual value. This work aims to fill that gap by
presenting a firmware design that unifies these three
elements. The goal is to deliver a practical, reusable, and
protocol-compliant firmware foundation that supports
LINE Beacon broadcasting on the ESP32, developed
entirely using high-level, object-oriented MicroPython.

3. Materials and Methods
3.1 The firmware architecture

The firmware architecture was implemented using
MicroPython on the ESP32 platform, and it follows a
structured engineering workflow with four stages. As
shown in Fig 1, the system is organized into the ESP32
hardware layer, the MicroPython runtime layer, the
object-oriented design layer, and key implementation
features. The workflow comprises: (1) requirements
analysis, (2) object-oriented design, (3) firmware
implementation, and (4) testing and validation.
Specifications for BLE advertising and LINE Beacon
payloads were derived from the official documentation
[7]. Two core classes were designed, BLEManager and
LineBeacon, to ensure reusability and maintainability in
accordance with OOP principles [6]. Development used
Thonny IDE, with bytecode flashed via esptool.py [8].
MicroPython was chosen for its simple syntax, interactive
environment, and low memory footprint [4,5]. Validation
employed nRF Connect in a controlled indoor
environment. The ESP32 platform was selected for its
integrated BLE module, dual-core architecture, and low
power consumption, which suit 10T prototyping and
deployment [3].

200mm

2\ |ESP32 Hardware Layer

CPU+Memory GPIO Interface Power

BLE Module o

MicroPython Runtime Layer

n Hardware Abstractions Layer (HAL)

Object-Oriented Design

BLE Controller LINE Beacon Device Manager

Implementation Features

Modular Design Code Reliability Easy Maintenance

Fig 1. Overall architecture of the proposed firmware, showing the
interaction among the ESP32 hardware layer, the MicroPython runtime
layer, the object-oriented components, and the implementation
features.

3.2 The process of a LINE Beacon device

A LINE Beacon device broadcasts BLE advertising
packets to nearby smartphones running the LINE
application. Each packet carries a UUID, Major, and
Minor values that uniquely identify the beacon. The end-
to-end interaction, from beacon broadcast to content
delivery, is illustrated in Fig 2: the LINE app detects and
decodes the packet, forwards identifiers to LINE’s
backend, retrieves mapped content, and displays it to the
user. This pipeline enables proximity-aware services such
as push notifications, promotional campaigns, and
contextual messages.

Line Beacon

Line API

Fig 2. Communication process of the LINE Beacon system, from BLE
broadcast and mobile decoding to backend mapping and user-side
presentation.

3.3 LINE Beacon Specifications

The LINE Beacon framework follows the BLE
broadcasting standard. A typical advertising packet
includes a UUID (128-bit), Major and Minor (16-bit
each), and Tx Power for proximity estimation. These
fields are encoded using the 3-AD structure. The packet
layout used in this work is depicted in Fig 3, which aligns
with BLE advertisement conventions and ensures
compatibility with the LINE application [7,9]. The three
advertisement data elements are: AD1, the prefix and
company identifier [9]; AD2, the beacon data payload
containing UUID, Major, Minor, and Tx Power; and AD3,
optional service data for extended functionality.



_
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 WA ey 2568 o T3 ausuys i e dadoalni

AD Structure 1: Flags

0x02 0x01 0x06
Length Type Data
AD Structure 2: 16-bit UUID
0x11 0x06 0x6F OxFE
Length Type UuUID1 UuID2
AD Structure 3: Service Data
0x11 0x16 0x02 Secure
Length Type UUID1 Message:
MAC:
Timestamp: 2
HWID MTP 0X7F Bytes
5 bytes
Secure Message: Non-
MAC: 4 byles .\1gmnrcat|0n‘
Timestamp: 2 bytes GRSl

Fig 3. Structure of a LINE Beacon advertising packet in 3-AD format,
indicating the placement of UUID, Major, Minor, and Tx Power for
proper parsing by the LINE application

3.4 Designing Classes for Object-Oriented
Firmware

To promote modularity and reuse, the firmware
design separates concerns into two classes. The
BLEManager class abstracts BLE initialization,
advertising interval configuration, and start/stop control,
which decouples low-level BLE operations from higher-
level logic. The LineBeacon class constructs protocol-
compliant advertising payloads, managing UUID, Major,
Minor, and Tx Power with setter methods for dynamic
updates. The separation of responsibilities is shown in Fig
4, while the interaction for packet handoff from
LineBeacon to BLEManager prior to broadcasting is
shown in Fig 5. This organization follows encapsulation
and separation of concerns, enabling cleaner interfaces
and easier maintenance [10].

© BLEManager

o ble: BLE
o advertising_interval: int

o BLEManager()

o advertise(payload: bytes): void

o stop_advertising(): void

o set_advertising_interval(interval: int): void

© sLe

e active(active: bool): void
o gap_advertise(interval: int, payload: bytes): void
o gap_stop_advertising(): void

Fig 4. Class Structure: BLEManager and LineBeacon

@ LineBeacon

O uuid: str

o major: int

o minor: int

o tx_power: int

o ad_prefix: bytes

o company _id: bytes
o ibeacon_type: bytes

o LineBeacon(uuid: str, major: int, minor: int, tx_power: int)
o generate_payload(): bytes

e set_uuid(uuid: str): void

e set_major(major: int): void

e set_minor(minor: int): void

o set_tx_power(tx_power: int): void

provides payload for

Y
© BLEManager
o ble: BLE

e advertise(payload: bytes): void
o stop_advertising(): void

Fig 5. Class Diagram of LineBeacon Providing Advertising

3.5 Implementing the Firmware Using Thonny
IDE

Development was performed in Thonny IDE, which
provides syntax highlighting, auto-completion, and an
integrated REPL for rapid iteration. The practical
workflow, summarized in Fig 6, involves writing code in
Thonny, uploading it to the ESP32, and verifying
operation via the serial console and BLE scanning tools.
Firmware images were flashed using esptool.py over
UART [8]. This setup reduces configuration overhead
compared with traditional toolchains and is well suited for
educational and research environments [4,5].

Phase 1

Module Design

with HAI

Fig 6. Development workflow using Thonny IDE, from coding
and flashing with esptool.py to iterative validation with REPL and BLE
analysis.

3.6 Firmware Testing and Validation Using nRF
Connect

Testing with nRF Connect confirmed protocol
compliance and correct packet structure, including the
presence of UUID, Major, Minor, and Tx Power fields. In
a controlled indoor environment, RSSI values were
consistently between —60 dBm and —65 dBm at distances
of 5-10 meters, and the configured advertising interval
was maintained at approximately 63 ms. These results



_
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 WA ey 2568 o T3 ausuys i e dadoalni

indicate stable transmission behavior suitable for small-
to-medium-scale 10T deployments.

To provide a clearer view of the experimental setup,
Fig 7 presents the prototype system used in this study. The
setup consists of two ESP32 development boards running
the proposed MicroPython firmware and a host computer
configured with Thonny IDE for code development,
flashing, and real-time debugging. The system was
validated using nRF Connect to scan and analyze BLE
packets.

In testing multiple ESP32 boards simultaneously,
each board was assigned to a different USB port and
configured in Thonny IDE or via esptool.py. Separate
sessions were opened to upload, run, and monitor the code
in parallel. This approach enabled efficient comparison of
results and verification of BLE packets across boards.

Fig 7. Prototype system setup for firmware testing and validation,
showing two ESP32 development boards connected via USB to a host
computer.

4. Results and Discussion
4.1 Packet Structure Validation

The proposed firmware successfully generated BLE
advertising packets that fully complied with the LINE
Beacon 3-AD format. Inspection using nRF Connect
verified that all required fields—UUID, Major, Minor,
and Tx Power—were present and correctly encoded. No
malformed packets were detected during the testing
period. This confirms that the object-oriented
MicroPython implementation is capable of meeting strict
protocol requirements, even on resource-constrained
hardware such as the ESP32.

4.2 Signal Stability and Accuracy

RSSI measurements recorded in a controlled indoor
environment showed stable values between —60 dBm and
—65 dBm at distances of 5 to 10 meters. These results are
consistent with expected BLE signal behavior for
medium-range proximity services. Packet accuracy
exceeded 97% across all trials, indicating that the
firmware is robust against transient interference in typical
deployment conditions. The summary of these findings is
presented in Table 1.

Table 1. BLE advertising performance metrics for the proposed
LINE Beacon firmware

Measured

Metric Notes
Value
Protocol Verified with nRF
. 100% Connect packet
compliance . .
inspection
Based on received
Packet accuracy >97% packet count vs.
expected count
60 to —65 Measured at 5-10 m
RSSI range in indoor
dBm .
environment
Advertlsmg ~63ms St_able across multiple
interval trials
N Compared to baseline
Memory overhead 5-10 KB MicroPython runtime

4.3 Memory Usage Analysis

To quantify the impact of object-oriented
implementation on memory consumption, memory usage
was recorded before and after instantiating the
BLEManager and LineBeacon objects. As shown in Table
2, instantiation resulted in an increase of approximately
10-11 KB, which aligns with the modest overhead
expected from MicroPython class allocation. This
memory footprint remains acceptable for ESP32-based
loT applications that require protocol compliance and
modular design.

Table 2. Memory usage before and after object instantiation

Object ID Memory Memory Increase
Before After
(bytes) (bytes)
BLEManager instance 5000 15000 +10000
LineBeacon instance 7000 18000 +11000

4.4 Advertising Interval Consistency

The configured advertising interval of ~63 ms was
consistently maintained during extended operation (>30
minutes). This value was not chosen arbitrarily; it is the
default interval enforced by the ESP32 MicroPython BLE
stack, which sets the parameter within the 60-65 ms
range. Our validation confirmed that this constraint
resulted in stable operation with no noticeable packet loss
or jitter. Although optimization of advertising intervals
was not the focus of this study, the observed ~63 ms
setting is widely adopted in loT beacon deployments,
balancing energy efficiency and responsiveness for
proximity-based services.

4.5 Development Efficiency and Maintainability

Compared to traditional C/C++ ESP-IDF
implementations, the proposed MicroPython
firmware  framework  significantly  reduced
development time. This improvement results from
its simpler syntax, REPL-based debugging, and
modular object-oriented design. The separation of
BLE control (BLEManager) from payload



v
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 WA ey 2568 o T3 ausuys i e dadoalni

generation (LineBeacon) facilitated maintenance
and streamlined updates when modifying beacon
identifiers or protocol parameters. These
characteristics make the framework particularly
suitable for rapid prototyping, small-to-medium loT
deployments, and educational contexts where fast
iteration is critical.

This study did not perform direct benchmarking of
execution speed, energy efficiency, or throughput against
traditional C/C++ firmware. While MicroPython offers
clear advantages in accessibility and maintainability,
detailed comparisons with low-level implementations are
still required to fully quantify the trade-offs between
development convenience and runtime performance.

The experimental results confirmed that the proposed
firmware framework achieves protocol compliance and
stable performance. However, practical trade-offs should
be recognized. MicroPython introduces modest overhead
in memory usage and execution speed, which may limit
its suitability for highly resource-constrained or
performance-critical applications. These costs are
balanced by significant benefits in development speed,
modularity, and maintainability. In contrast, C/C++
implementations typically deliver superior runtime
efficiency and lower memory consumption but require
longer development cycles and steeper learning curves.
For many loT prototyping and educational contexts, the
advantages of MicroPython outweigh its performance
limitations, while large-scale or energy-sensitive
deployments may still benefit from low-level approaches.

4.6 Limitations

While the proposed firmware framework provides a
novel and practical approach to LINE Beacon
broadcasting, several limitations remain. First, all
evaluations were conducted under controlled laboratory
conditions, and the system’s behavior in noisy or high-
density BLE environments (e.g., public Wi-Fi zones) has
not yet been tested. Second, the current implementation
focuses solely on BLE packet broadcasting and does not
include integration with LINE’s cloud infrastructure;
consequently, services such as push notifications, user
engagement, and analytics cannot be fully demonstrated.
Third, energy consumption profiling was not performed,
particularly in idle and deep-sleep modes, leaving power
efficiency unquantified. Finally, no direct cross-platform
benchmarking was conducted against C/C++
implementations in terms of execution speed, energy
consumption, startup latency, or throughput, meaning the
performance trade-offs were only qualitatively discussed..

4.7 Summary of Findings

The experimental results confirm that the proposed
object-oriented MicroPython framework for LINE
Beacon broadcasting on the ESP32 achieves full protocol
compliance, stable signal performance, and high packet
accuracy while incurring only modest memory overhead.

200mm

Packet inspections using nRF Connect verified correct 3-
AD packet formatting, and RSSI measurements
demonstrated consistent signal stability between —60 and
—65 dBm. Advertising intervals remained steady at
approximately 63 ms over prolonged operation, and
memory usage increased by only 10-11 KB after object
instantiation—well within the constraints of the ESP32
platform.

Compared to traditional C/C++ implementations, the
MicroPython approach offered faster development, easier
maintenance, and greater modularity without significantly
compromising performance. These characteristics,
combined with the framework’s scalability and
reusability, make it a practical foundation for real-world
10T applications in retail, smart cities, and asset tracking.

5. Conclusions

This work presented a lightweight, object-oriented
MicroPython firmware framework for broadcasting LINE
Beacon packets on the ESP32 platform. The proposed
design encapsulated BLE initialization, advertising
interval control, and payload generation into two reusable
classes—BLEManager and  LineBeacon—ensuring
protocol compliance with the LINE Beacon 3-AD format
while enhancing modularity, maintainability, and
development speed.

Experimental validation demonstrated correct packet
structure, stable RSSI values between —60 and —65 dBm,
over 97% packet accuracy, and consistent advertising
intervals (~63 ms) under controlled indoor conditions.
Memory analysis confirmed that the object-oriented
implementation incurred only modest overhead (10-11
KB), which remains acceptable for the ESP32’s hardware
constraints.

The main contributions of this study are:

1) A reusable OOP-based MicroPython framework
for BLE broadcasting on ESP32, offering clearer structure
and faster development compared with conventional
C/C++ firmware.

2) Empirical validation of protocol compliance and
performance, confirming high packet accuracy, signal
stability, and consistent advertising intervals suitable for
proximity-based loT applications.

3) Demonstration of practical trade-offs between
MicroPython and C/C++ development, highlighting the
balance between rapid prototyping efficiency and
performance overhead.

These findings demonstrate that combining
MicroPython with object-oriented principles provides a
practical and scalable foundation for small-to-medium
10T deployments. The framework can serve as a reference
for educational, research, and proof-of-concept
implementations, while paving the way for future work on
power profiling, backend integration, multi-protocol
support, and security enhancements.



v
msdszauimmsmedaanssuluii asadi 48
The 48" Electrical Engineering Conference (EECON-48)

U 19-21 WA ey 2568 o T3 ausuys i e dadoalni

Future Work

Several directions will be pursued to enhance and
extend the proposed firmware framework. First, detailed
power consumption profiling will be conducted in active,
idle, and deep-sleep modes to support long-term, battery-
powered deployments. Second, real-world deployment
testing will be performed in congested RF environments
such as shopping malls, transportation hubs, and public
events, where BLE interference is common. Third,
backend integration will be developed to enable secure
communication with LINE’s cloud infrastructure,
providing full support for push notifications, analytics,
and real-time user engagement.

Fourth, systematic cross-language benchmarking
against ESP-IDF and Arduino C++ implementations will
be carried out to evaluate execution speed, memory usage,
and energy efficiency, thereby clarifying the trade-offs
between MicroPython’s development advantages and the
performance of low-level approaches. Fifth, multi-
protocol support will be added to extend compatibility
with beacon standards such as iBeacon and Eddystone.
Finally, lightweight encryption and authentication
schemes will be investigated to strengthen security
against spoofing and unauthorized data injection.

These directions will not only address current
limitations but also position the firmware framework for
adoption in a wider range of proximity-based loT
applications, including retail, tourism, and industrial asset
tracking.

References

“Performance evaluation of C/C++, MicroPython,
Rust and TinyGo programming languages on ESP32
microcontroller,” Electronics, vol. 12, no. 1, Art. no.
143, 2023, doi: 10.3390/electronics12010143.

[2] M. Siekkinen, M. Hiienkari, J. Nurminen, and J.
Nieminen, “How low energy is Bluetooth low
energy?  Comparative ~ measurements  with
ZigBee/802.15.4,” in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops (WCNCW), Paris, France,
2012, pp. 153-158, doi:
10.1109/WCNCW.2012.6215496.

[3] D. Hercog, T. Lerher, M. Trunti¢, and O. Tezak,
“Design and implementation of ESP32-based loT
devices,” Sensors, vol. 23, no. 15, Art. no. 6739,
2023, doi: 10.3390/s23156739.

[4] “MicroPython  libraries—MicroPython latest
documentation.” [Online]. Available:
https://docs.micropython.org/en/latest/library/index.
html. (Accessed: Feb. 21, 2025).

[5] “Technical documents | Espressif Systems.”
[Online]. Available:
https://www.espressif.com/en/support/documents/te
chnical-documents. (Accessed: Apr. 11, 2025).

[6] T. Vallius, J. Haverinen, and J. Roning, “Object-
oriented embedded system development method for
easy and fast prototyping,” in Mechatronics for

200mm

Safety, Security and Dependability in a New Era.
Amsterdam, The Netherlands: Elsevier, 2007, pp.
265-270, doi: 10.1016/B978-008044963-0/50054-0.

[7] “LINE developers.” [Online]. Available:
https://developers.line.biz/. (Accessed: Apr. 11,
2025).

[8] “Occupancy monitoring using BLE beacons:
Intelligent Bluetooth virtual door system,” Sensors,
vol. 25, no. 9, Art. no. 2638, 2025. [Online].
Available: https://www.mdpi.com/1424-
8220/25/9/2638. (Accessed: May 21, 2025).

[9] P. Babiuch, W. Folwarczny, and R. Jurankova,
“Using the ESP32 microcontroller for data
processing,” MATEC Web of Conferences, vol. 210,
pp. 6, 2019.

[10]D. Mischianti, “MicroPython with ESP8266 and
ESP32: Flashing firmware and programming with
basic tools - 1,” Mischianti Blog, May 2023. [Online].
Available:https://www.mischianti.org/2023/05/13/m
icropython-with-esp8266-and-esp32-flashing-
firmware-and-programming-with-basic-tools-1/.
(Accessed: Apr. 11, 2025).

[11]“The power of object-oriented programming in
embedded systems,” CPP Cat Blog, C. Cat, 2023.
[Online]. Available:
https://cppcat.com/2023/08/17/the-power-of-object-
oriented-programming-in-embedded-systems/.
(Accessed: Mar. 31, 2025).

[12]D. Avellaneda, D. Mendez, and G. Fortino, “A
TinyML deep learning approach for indoor tracking
of assets,” Sensors, vol. 23, no. 3, Art. no. 1542,
2023, doi: 10.3390/s23031542.

[13]R. Ramirez, C.-Y. Huang, C.-A. Liao, P.-T. Lin, H.-
W. Lin, and S.-H. Liang, “A practice of BLE RSSI
measurement for indoor positioning,” Sensors, vol.
21, no. 15, Art. no. 5181, 2021, doi:
10.3390/s21155181.

[14]V. Tonescu and F. Enescu, “Investigating the
performance of MicroPython and C on ESP32 and
STM32 microcontrollers,” in Proc. 2020 IEEE 26th
International Conference on Automation, Quality
and Testing, Robotics (AQTR), 2020, pp. 237-242.

[15]M. Antonini, M. Pincheira, M. Vecchio, and F.
Antonelli, “An adaptable and unsupervised TinyML
anomaly detection system for extreme industrial
environments,” Sensors, vol. 23, no. 4, Art. no. 2344,
2023, doi: 10.3390/s23042344.

[16]R. Uddin, T. Hwang, and 1. Koo, “Worker presence
monitoring in complex workplaces using BLE
beacon-assisted multi-hop 10T networks powered by
ESP-NOW,” Electronics, vol. 13, no. 21, Art. no.
4201, 2024, doi: 10.3390/electronics13214201.

[17]K. Ferencz and J. Domokos, “Rapid prototyping of
ToT applications for the industry,” in Proc. IEEE Int.
Conf. Autom., Qual. Test., Robot. (AQTR), Cluj-
Napoca, Romania, 2020, pp. 1-6, doi:
10.1109/AQTR49680.2020.9129934.



