
การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

*Corresponding Author

A Lightweight Object-Oriented MicroPython Firmware for LINE Beacon Broadcasting

on ESP32

Supakit Nakpomchin1, Pichaya Sookplung1, Somkiat Chormuan2 and Suphitcha Chanrueang2*

1Department of Information Technology, Faculty of Science and Technology, Nakhon Pathom Rajabhat

University, Thailand, supakrid@webmail.npru.ac.th pichaya@webmail.npru.ac.th
2Department of Software Engineering, Faculty of Science and Technology, Nakhon Pathom Rajabhat University,

Thailand, tko@webmail.npru.ac.th suphitcha@webmail.npru.ac.th*

Abstract

 This paper presents a lightweight, object-oriented

MicroPython firmware framework for broadcasting LINE

Beacon packets on ESP32. The framework enhances

modularity, reusability, and maintainability compared

with conventional C/C++ implementations, which are

often complex and time-consuming. The design

encapsulates BLE advertising management and LINE

Beacon payload generation into two reusable classes—

BLEManager and LineBeacon—ensuring protocol

compliance with the 3-AD format. Experimental

validation confirmed stable operation, with advertising

intervals consistently maintained at ~63 ms, packet

accuracy above 97%, and RSSI values around −60 to −65

dBm at distances of 5–10 m. Memory analysis showed a

modest overhead of 10–11 KB, acceptable for ESP32-

based IoT deployments. These results demonstrate that

the proposed firmware framework offers a practical and

efficient foundation for proximity-based services,

balancing ease of development with reliable performance.

Keywords: MicroPython, ESP32, Bluetooth Low Energy

(BLE), Firmware Framework, LINE Beacon, IoT

1. Introduction
The Internet of Things (IoT) has transformed

embedded systems by enabling real-time sensing,

actuation, and communication in domains such as

healthcare, smart cities, and industrial automation [1,2].

The ESP32 microcontroller has emerged as a popular

platform for IoT prototyping due to its integrated Wi-Fi

and Bluetooth Low Energy (BLE) modules, dual-core

processor, and cost efficiency [3]. Traditionally, firmware

for such platforms is developed in C/C++, which—while

performant—often results in longer development cycles,

limited modularity, and a steep learning curve.

MicroPython, a lightweight implementation of

Python for microcontrollers, offers a more accessible and

iterative development environment [4,5]. When combined

with object-oriented programming (OOP) principles, it

enables reusable, scalable, and maintainable firmware

designs [6]. However, few existing works leverage

MicroPython and OOP to create modular BLE

broadcasting frameworks for real-world applications.

Meanwhile, LINE Beacon, a BLE-based proximity

protocol by LINE Corporation, has gained adoption in

Southeast Asia for location-aware services in retail,

transit, and tourism [7,8]. Despite its potential, there is a

lack of lightweight, open-source firmware specifically

tailored to broadcast LINE Beacon packets on low-cost

microcontrollers using high-level languages.

This work addresses that gap by presenting a

lightweight, object-oriented MicroPython firmware

framework for LINE Beacon broadcasting on the ESP32.

The framework encapsulates BLE operations and payload

generation into two reusable classes, BLEManager and

LineBeacon, ensuring protocol compliance,

maintainability, and rapid prototyping. Experimental

validation confirms stable signal performance, >97%

packet accuracy, and modest resource usage, making the

proposed solution well-suited for scalable, proximity

based IoT deployments.

2. Literature Review
Firmware development for embedded systems has

evolved substantially over the last decade. Early

approaches predominantly relied on low-level

programming in C/C++, which provided performance and

control but lacked modularity and maintainability,

particularly in large-scale or fast-evolving IoT

deployments [9]

Between 2018 and 2020, developers and researchers

began exploring high-level alternatives that could

improve productivity without severely compromising

performance. MicroPython emerged during this period as

a lightweight implementation of Python tailored for

microcontrollers such as the ESP32. Its rapid prototyping

capability, simplified syntax, and REPL-based interaction

proved particularly attractive in educational, research, and

low-power IoT applications [9,10]. However, most

implementations remained procedural and lacked long-

term scalability. Comparative studies by Plauska et al. [1]

and Ionescu et al. highlighted these limitations.

From 2020 onward, attention shifted toward

embedding object-oriented programming (OOP)

principles into firmware development, even on

constrained hardware. Researchers such as Maclean et al.
[11] and Avellaneda et al. [12] emphasized the advantages

of modular firmware design based on encapsulation and

reusability, suggesting that such patterns are well-suited

for the evolving requirements of embedded IoT systems.

In parallel, Bluetooth Low Energy (BLE) gained

traction as the de facto wireless protocol for low-power,

short-range communication. By 2021, BLE was widely

adopted in smart devices for applications such as indoor

positioning, proximity services, and occupancy detection

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

[13]. With the rollout of BLE 5.0, improvements in range

and stability made it even more practical for real-world

environments. Around this time, LINE Corporation

introduced LINE Beacon, a BLE-based broadcast

protocol designed for proximity interactions in retail,

transportation, and tourism. While its application

potential was clear, few firmware-level frameworks were

developed to support LINE Beacon broadcasting,

particularly on microcontrollers [14].

From 2022 to the present, developers have continued

to adopt the ESP32 as a BLE-capable microcontroller due

to its affordability and built-in connectivity. However,

BLE implementation practices are still mostly C/C++

based via the ESP-IDF or Arduino toolchains, which can

be difficult to scale or modify. MicroPython support for

BLE has improved but remains fragmented, with few

reusable frameworks and little attention given to

standardized broadcasting protocols like LINE Beacon

[7,15]. Raihan et al. [16] demonstrated BLE-based

presence monitoring on the ESP32, further highlighting

its reliability, but stopped short of adopting object-

oriented MicroPython design.

To date, no unified approach has been proposed that

combines MicroPython, OOP firmware design, and LINE

Beacon broadcasting on the ESP32, despite their proven

individual value. This work aims to fill that gap by

presenting a firmware design that unifies these three

elements. The goal is to deliver a practical, reusable, and

protocol-compliant firmware foundation that supports

LINE Beacon broadcasting on the ESP32, developed

entirely using high-level, object-oriented MicroPython.

3. Materials and Methods

3.1 The firmware architecture

The firmware architecture was implemented using

MicroPython on the ESP32 platform, and it follows a

structured engineering workflow with four stages. As

shown in Fig 1, the system is organized into the ESP32

hardware layer, the MicroPython runtime layer, the

object-oriented design layer, and key implementation

features. The workflow comprises: (1) requirements

analysis, (2) object-oriented design, (3) firmware

implementation, and (4) testing and validation.

Specifications for BLE advertising and LINE Beacon

payloads were derived from the official documentation

[7]. Two core classes were designed, BLEManager and

LineBeacon, to ensure reusability and maintainability in

accordance with OOP principles [6]. Development used

Thonny IDE, with bytecode flashed via esptool.py [8].

MicroPython was chosen for its simple syntax, interactive

environment, and low memory footprint [4,5]. Validation

employed nRF Connect in a controlled indoor

environment. The ESP32 platform was selected for its

integrated BLE module, dual-core architecture, and low

power consumption, which suit IoT prototyping and

deployment [3].

Fig 1. Overall architecture of the proposed firmware, showing the

interaction among the ESP32 hardware layer, the MicroPython runtime
layer, the object-oriented components, and the implementation

features.

3.2 The process of a LINE Beacon device
A LINE Beacon device broadcasts BLE advertising

packets to nearby smartphones running the LINE

application. Each packet carries a UUID, Major, and

Minor values that uniquely identify the beacon. The end-

to-end interaction, from beacon broadcast to content

delivery, is illustrated in Fig 2: the LINE app detects and

decodes the packet, forwards identifiers to LINE’s

backend, retrieves mapped content, and displays it to the

user. This pipeline enables proximity-aware services such

as push notifications, promotional campaigns, and

contextual messages.

Fig 2. Communication process of the LINE Beacon system, from BLE

broadcast and mobile decoding to backend mapping and user-side
presentation.

3.3 LINE Beacon Specifications

The LINE Beacon framework follows the BLE

broadcasting standard. A typical advertising packet

includes a UUID (128-bit), Major and Minor (16-bit

each), and Tx Power for proximity estimation. These

fields are encoded using the 3-AD structure. The packet

layout used in this work is depicted in Fig 3, which aligns

with BLE advertisement conventions and ensures

compatibility with the LINE application [7,9]. The three

advertisement data elements are: AD1, the prefix and

company identifier [9]; AD2, the beacon data payload

containing UUID, Major, Minor, and Tx Power; and AD3,

optional service data for extended functionality.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Fig 3. Structure of a LINE Beacon advertising packet in 3-AD format,

indicating the placement of UUID, Major, Minor, and Tx Power for

proper parsing by the LINE application

3.4 Designing Classes for Object-Oriented

Firmware
To promote modularity and reuse, the firmware

design separates concerns into two classes. The

BLEManager class abstracts BLE initialization,

advertising interval configuration, and start/stop control,

which decouples low-level BLE operations from higher-

level logic. The LineBeacon class constructs protocol-

compliant advertising payloads, managing UUID, Major,

Minor, and Tx Power with setter methods for dynamic

updates. The separation of responsibilities is shown in Fig

4, while the interaction for packet handoff from

LineBeacon to BLEManager prior to broadcasting is

shown in Fig 5. This organization follows encapsulation

and separation of concerns, enabling cleaner interfaces

and easier maintenance [10].

Fig 4. Class Structure: BLEManager and LineBeacon

Fig 5. Class Diagram of LineBeacon Providing Advertising

3.5 Implementing the Firmware Using Thonny

IDE
Development was performed in Thonny IDE, which

provides syntax highlighting, auto-completion, and an

integrated REPL for rapid iteration. The practical

workflow, summarized in Fig 6, involves writing code in

Thonny, uploading it to the ESP32, and verifying

operation via the serial console and BLE scanning tools.

Firmware images were flashed using esptool.py over

UART [8]. This setup reduces configuration overhead

compared with traditional toolchains and is well suited for

educational and research environments [4,5].

Fig 6. Development workflow using Thonny IDE, from coding

and flashing with esptool.py to iterative validation with REPL and BLE

analysis.

3.6 Firmware Testing and Validation Using nRF

Connect
Testing with nRF Connect confirmed protocol

compliance and correct packet structure, including the

presence of UUID, Major, Minor, and Tx Power fields. In

a controlled indoor environment, RSSI values were

consistently between −60 dBm and −65 dBm at distances

of 5–10 meters, and the configured advertising interval

was maintained at approximately 63 ms. These results

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

indicate stable transmission behavior suitable for small-

to-medium-scale IoT deployments.

To provide a clearer view of the experimental setup,

Fig 7 presents the prototype system used in this study. The

setup consists of two ESP32 development boards running

the proposed MicroPython firmware and a host computer

configured with Thonny IDE for code development,

flashing, and real-time debugging. The system was

validated using nRF Connect to scan and analyze BLE

packets.

In testing multiple ESP32 boards simultaneously,

each board was assigned to a different USB port and

configured in Thonny IDE or via esptool.py. Separate

sessions were opened to upload, run, and monitor the code

in parallel. This approach enabled efficient comparison of

results and verification of BLE packets across boards.

Fig 7. Prototype system setup for firmware testing and validation,

showing two ESP32 development boards connected via USB to a host
computer.

4. Results and Discussion

4.1 Packet Structure Validation
The proposed firmware successfully generated BLE

advertising packets that fully complied with the LINE

Beacon 3-AD format. Inspection using nRF Connect

verified that all required fields—UUID, Major, Minor,

and Tx Power—were present and correctly encoded. No

malformed packets were detected during the testing

period. This confirms that the object-oriented

MicroPython implementation is capable of meeting strict

protocol requirements, even on resource-constrained

hardware such as the ESP32.

4.2 Signal Stability and Accuracy
 RSSI measurements recorded in a controlled indoor

environment showed stable values between −60 dBm and

−65 dBm at distances of 5 to 10 meters. These results are

consistent with expected BLE signal behavior for

medium-range proximity services. Packet accuracy

exceeded 97% across all trials, indicating that the

firmware is robust against transient interference in typical

deployment conditions. The summary of these findings is

presented in Table 1.

4.3 Memory Usage Analysis
To quantify the impact of object-oriented

implementation on memory consumption, memory usage

was recorded before and after instantiating the

BLEManager and LineBeacon objects. As shown in Table

2, instantiation resulted in an increase of approximately

10–11 KB, which aligns with the modest overhead

expected from MicroPython class allocation. This

memory footprint remains acceptable for ESP32-based

IoT applications that require protocol compliance and

modular design.

4.4 Advertising Interval Consistency
The configured advertising interval of ~63 ms was

consistently maintained during extended operation (>30

minutes). This value was not chosen arbitrarily; it is the

default interval enforced by the ESP32 MicroPython BLE

stack, which sets the parameter within the 60–65 ms

range. Our validation confirmed that this constraint

resulted in stable operation with no noticeable packet loss

or jitter. Although optimization of advertising intervals

was not the focus of this study, the observed ~63 ms

setting is widely adopted in IoT beacon deployments,

balancing energy efficiency and responsiveness for

proximity-based services.

4.5 Development Efficiency and Maintainability

 Compared to traditional C/C++ ESP-IDF

implementations, the proposed MicroPython

firmware framework significantly reduced

development time. This improvement results from

its simpler syntax, REPL-based debugging, and

modular object-oriented design. The separation of

BLE control (BLEManager) from payload

Table 1. BLE advertising performance metrics for the proposed

LINE Beacon firmware

Metric
Measured

Value
Notes

Protocol
compliance

100%

Verified with nRF

Connect packet

inspection

Packet accuracy >97%

Based on received

packet count vs.

expected count

RSSI range
−60 to −65

dBm

Measured at 5–10 m
in indoor

environment

Advertising
interval

~63 ms
Stable across multiple
trials

Memory overhead ~5–10 KB
Compared to baseline

MicroPython runtime

Table 2. Memory usage before and after object instantiation

Object ID Memory
Before

(bytes)

Memory
After

(bytes)

Increase

BLEManager instance 5000 15000 +10000

LineBeacon instance 7000 18000 +11000

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

generation (LineBeacon) facilitated maintenance

and streamlined updates when modifying beacon

identifiers or protocol parameters. These

characteristics make the framework particularly

suitable for rapid prototyping, small-to-medium IoT

deployments, and educational contexts where fast

iteration is critical.
This study did not perform direct benchmarking of

execution speed, energy efficiency, or throughput against

traditional C/C++ firmware. While MicroPython offers

clear advantages in accessibility and maintainability,

detailed comparisons with low-level implementations are

still required to fully quantify the trade-offs between

development convenience and runtime performance.

The experimental results confirmed that the proposed

firmware framework achieves protocol compliance and

stable performance. However, practical trade-offs should

be recognized. MicroPython introduces modest overhead

in memory usage and execution speed, which may limit

its suitability for highly resource-constrained or

performance-critical applications. These costs are

balanced by significant benefits in development speed,

modularity, and maintainability. In contrast, C/C++

implementations typically deliver superior runtime

efficiency and lower memory consumption but require

longer development cycles and steeper learning curves.

For many IoT prototyping and educational contexts, the

advantages of MicroPython outweigh its performance

limitations, while large-scale or energy-sensitive

deployments may still benefit from low-level approaches.

4.6 Limitations
While the proposed firmware framework provides a

novel and practical approach to LINE Beacon

broadcasting, several limitations remain. First, all

evaluations were conducted under controlled laboratory

conditions, and the system’s behavior in noisy or high-

density BLE environments (e.g., public Wi-Fi zones) has

not yet been tested. Second, the current implementation

focuses solely on BLE packet broadcasting and does not

include integration with LINE’s cloud infrastructure;

consequently, services such as push notifications, user

engagement, and analytics cannot be fully demonstrated.

Third, energy consumption profiling was not performed,

particularly in idle and deep-sleep modes, leaving power

efficiency unquantified. Finally, no direct cross-platform

benchmarking was conducted against C/C++

implementations in terms of execution speed, energy

consumption, startup latency, or throughput, meaning the

performance trade-offs were only qualitatively discussed..

4.7 Summary of Findings
The experimental results confirm that the proposed

object-oriented MicroPython framework for LINE

Beacon broadcasting on the ESP32 achieves full protocol

compliance, stable signal performance, and high packet

accuracy while incurring only modest memory overhead.

Packet inspections using nRF Connect verified correct 3-

AD packet formatting, and RSSI measurements

demonstrated consistent signal stability between −60 and

−65 dBm. Advertising intervals remained steady at

approximately 63 ms over prolonged operation, and

memory usage increased by only 10–11 KB after object

instantiation—well within the constraints of the ESP32

platform.

Compared to traditional C/C++ implementations, the

MicroPython approach offered faster development, easier

maintenance, and greater modularity without significantly

compromising performance. These characteristics,

combined with the framework’s scalability and

reusability, make it a practical foundation for real-world

IoT applications in retail, smart cities, and asset tracking.

5. Conclusions
This work presented a lightweight, object-oriented

MicroPython firmware framework for broadcasting LINE

Beacon packets on the ESP32 platform. The proposed

design encapsulated BLE initialization, advertising

interval control, and payload generation into two reusable

classes—BLEManager and LineBeacon—ensuring

protocol compliance with the LINE Beacon 3-AD format

while enhancing modularity, maintainability, and

development speed.

Experimental validation demonstrated correct packet

structure, stable RSSI values between −60 and −65 dBm,

over 97% packet accuracy, and consistent advertising

intervals (~63 ms) under controlled indoor conditions.

Memory analysis confirmed that the object-oriented

implementation incurred only modest overhead (10–11

KB), which remains acceptable for the ESP32’s hardware

constraints.

The main contributions of this study are:

1) A reusable OOP-based MicroPython framework

for BLE broadcasting on ESP32, offering clearer structure

and faster development compared with conventional

C/C++ firmware.

2) Empirical validation of protocol compliance and

performance, confirming high packet accuracy, signal

stability, and consistent advertising intervals suitable for

proximity-based IoT applications.

3) Demonstration of practical trade-offs between

MicroPython and C/C++ development, highlighting the

balance between rapid prototyping efficiency and

performance overhead.

These findings demonstrate that combining

MicroPython with object-oriented principles provides a

practical and scalable foundation for small-to-medium

IoT deployments. The framework can serve as a reference

for educational, research, and proof-of-concept

implementations, while paving the way for future work on

power profiling, backend integration, multi-protocol

support, and security enhancements.

การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48
The 48th Electrical Engineering Conference (EECON-48)

วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่

Future Work
Several directions will be pursued to enhance and

extend the proposed firmware framework. First, detailed

power consumption profiling will be conducted in active,

idle, and deep-sleep modes to support long-term, battery-

powered deployments. Second, real-world deployment

testing will be performed in congested RF environments

such as shopping malls, transportation hubs, and public

events, where BLE interference is common. Third,

backend integration will be developed to enable secure

communication with LINE’s cloud infrastructure,

providing full support for push notifications, analytics,

and real-time user engagement.

Fourth, systematic cross-language benchmarking

against ESP-IDF and Arduino C++ implementations will

be carried out to evaluate execution speed, memory usage,

and energy efficiency, thereby clarifying the trade-offs

between MicroPython’s development advantages and the

performance of low-level approaches. Fifth, multi-

protocol support will be added to extend compatibility

with beacon standards such as iBeacon and Eddystone.

Finally, lightweight encryption and authentication

schemes will be investigated to strengthen security

against spoofing and unauthorized data injection.

These directions will not only address current

limitations but also position the firmware framework for

adoption in a wider range of proximity-based IoT

applications, including retail, tourism, and industrial asset

tracking.

References

[1] I. Plauska, A. Liutkevičius, and A. Janavičiūtė,

“Performance evaluation of C/C++, MicroPython,

Rust and TinyGo programming languages on ESP32

microcontroller,” Electronics, vol. 12, no. 1, Art. no.

143, 2023, doi: 10.3390/electronics12010143.

[2] M. Siekkinen, M. Hiienkari, J. Nurminen, and J.

Nieminen, “How low energy is Bluetooth low

energy? Comparative measurements with

ZigBee/802.15.4,” in Proc. IEEE Wireless Commun.

Netw. Conf. Workshops (WCNCW), Paris, France,

2012, pp. 153–158, doi:

10.1109/WCNCW.2012.6215496.

[3] D. Hercog, T. Lerher, M. Truntič, and O. Težak,

“Design and implementation of ESP32-based IoT

devices,” Sensors, vol. 23, no. 15, Art. no. 6739,

2023, doi: 10.3390/s23156739.

[4] “MicroPython libraries—MicroPython latest

documentation.” [Online]. Available:

https://docs.micropython.org/en/latest/library/index.

html. (Accessed: Feb. 21, 2025).

[5] “Technical documents | Espressif Systems.”

[Online]. Available:

https://www.espressif.com/en/support/documents/te

chnical-documents. (Accessed: Apr. 11, 2025).

[6] T. Vallius, J. Haverinen, and J. Röning, “Object-

oriented embedded system development method for

easy and fast prototyping,” in Mechatronics for

Safety, Security and Dependability in a New Era.

Amsterdam, The Netherlands: Elsevier, 2007, pp.

265–270, doi: 10.1016/B978-008044963-0/50054-0.

[7] “LINE developers.” [Online]. Available:

https://developers.line.biz/. (Accessed: Apr. 11,

2025).

[8] “Occupancy monitoring using BLE beacons:

Intelligent Bluetooth virtual door system,” Sensors,

vol. 25, no. 9, Art. no. 2638, 2025. [Online].

Available: https://www.mdpi.com/1424-

8220/25/9/2638. (Accessed: May 21, 2025).

[9] P. Babiuch, W. Folwarczny, and R. Juránková,

“Using the ESP32 microcontroller for data

processing,” MATEC Web of Conferences, vol. 210,

pp. 6, 2019.

[10] D. Mischianti, “MicroPython with ESP8266 and

ESP32: Flashing firmware and programming with

basic tools - 1,” Mischianti Blog, May 2023. [Online].

Available:https://www.mischianti.org/2023/05/13/m

icropython-with-esp8266-and-esp32-flashing-

firmware-and-programming-with-basic-tools-1/.

(Accessed: Apr. 11, 2025).

[11] “The power of object-oriented programming in

embedded systems,” CPP Cat Blog, C. Cat, 2023.

[Online]. Available:

https://cppcat.com/2023/08/17/the-power-of-object-

oriented-programming-in-embedded-systems/.

(Accessed: Mar. 31, 2025).

[12] D. Avellaneda, D. Mendez, and G. Fortino, “A

TinyML deep learning approach for indoor tracking

of assets,” Sensors, vol. 23, no. 3, Art. no. 1542,

2023, doi: 10.3390/s23031542.

[13] R. Ramirez, C.-Y. Huang, C.-A. Liao, P.-T. Lin, H.-

W. Lin, and S.-H. Liang, “A practice of BLE RSSI

measurement for indoor positioning,” Sensors, vol.

21, no. 15, Art. no. 5181, 2021, doi:

10.3390/s21155181.

[14] V. Ionescu and F. Enescu, “Investigating the

performance of MicroPython and C on ESP32 and

STM32 microcontrollers,” in Proc. 2020 IEEE 26th

International Conference on Automation, Quality

and Testing, Robotics (AQTR), 2020, pp. 237–242.

[15] M. Antonini, M. Pincheira, M. Vecchio, and F.

Antonelli, “An adaptable and unsupervised TinyML

anomaly detection system for extreme industrial

environments,” Sensors, vol. 23, no. 4, Art. no. 2344,

2023, doi: 10.3390/s23042344.

[16] R. Uddin, T. Hwang, and I. Koo, “Worker presence

monitoring in complex workplaces using BLE

beacon-assisted multi-hop IoT networks powered by

ESP-NOW,” Electronics, vol. 13, no. 21, Art. no.

4201, 2024, doi: 10.3390/electronics13214201.

[17] K. Ferencz and J. Domokos, “Rapid prototyping of

IoT applications for the industry,” in Proc. IEEE Int.

Conf. Autom., Qual. Test., Robot. (AQTR), Cluj-

Napoca, Romania, 2020, pp. 1–6, doi:

10.1109/AQTR49680.2020.9129934.

