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Abstract

Grape leaves are susceptible to diseases that can
significantly reduce crop yield and quality, leading to
economic losses. While manual disease identification is
common, it is often inaccurate and time-consuming. To
address this, automatic recognition of grape leaf diseases
through deep learning has become essential.

This study proposes a fusion model that combines
the strengths of the VGG-16 and MobileNetV3
architectures to improve the accuracy and efficiency of
grape leaf disease classification. The research also
investigates the potential benefits of integrating an
attention mechanism into the fusion model. The models
were trained and evaluated using the Plant Village
dataset, which contains 4,062 images of grape leaves
categorized into four classes: Black Rot, Esca, Leaf
Blight, and Healthy. To address the imbalance in the
number of images per class, data augmentation
techniques were applied.

The performance of the proposed models was
compared against base models, including VGG-16 and
MobileNetV3, using metrics such as accuracy, F1-score,
and AUC. The results indicate that the fusion model with
an attention mechanism achieved the highest
performance with an accuracy of 99.55%, an F1-score of
99.55%, and an AUC of 99.99%. This outperformed the
baseline fusion model, VGG-16, and MobileNetV3. The
study demonstrates that combining different model
architectures and incorporating attention mechanisms can
lead to more accurate and efficient solutions for real-
world agricultural applications.
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1. Introduction

Agriculture is currently one of the most important
food products for human nutrition [1], As the global
population continues to grow, mainly in developing
countries, the demand for food will rise significantly.
Grapes are an economically important crop worldwide,
particularly Central Europe and Southwest Asia.
However, grape leaves are easily affected diseases caused
by environmental factors, bacteria, and viruses [2]. These
diseases include Black Rot, Esca, and Leaf Blight. They
can greatly decrease grape yield and quality, leading to
economic losses for farmers and disruptions in trade.
From historical times up to today. There are multiple
techniques for identifying diseases in grape leaves,
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manual identification. Mostly farmers use personal
experience or expert visual inspection, which is often
incorrect and time-consuming. Moreover, Inaccurate
diagnoses often result in inappropriate pesticide use,
which negatively impacts both the vineyard environment
and fruit quality. Hence automatic recognition of grape
leaf diseases is essential for improving diagnostic
accuracy.

Today, machine learning techniques help achieve
this. Effective quality control is also important to increase
income from agricultural services [3]. Deep learning is a
machine learning approach that relies on artificial neural
networks and large datasets to deliver high prediction
accuracy and quickly diagnosed plant diseases. There are
common algorithms used for detection plant disease such
as VGG, Resnet, Inception, and EfficientNet [4].

This study proposes a fusion model to improve the
accuracy of grape leaf disease classification by merging
strengths of both model VGG-16’s deep future extraction
and MobileNetV3’s lightweight efficiency. The fusion
model aims to achieve a balance between performance
and processing cost. Furthermore, the study explores the
future benefits of combining Attention mechanism into
the fusion model. This addition is expected to enhance the
model's ability.

2. Literature review

Many researchers have adopted CNN to automate
disease detection tasks using leaf images. Deep learning,
particularly CNN, has emerged as a predominant method
for plant disease classification owing to its robust feature
extraction capabilities. Within the agricultural sector.
Kunduracioglu el al(2024)[4] the research focuses on
classifying grape leaves and identify diseases using 14
CNN models and 17 vision transformer models. The
CNN-based models achieved an impressive accuracy of
99.03% and Fl-scores of 97.80% and 97.62%,
respectively. The models have strong potential for
farmers and agricultural professionals by providing
decision-making and improving production efficiency.
This study emphasizes the opportunity of deep learning
to transform plant health by evaluating agriculture. But
limitations in real-world agricultural environments.
Similarly, Mandal et al. [5] developed and compared
several CNN models such as DenseNetl121, ResNet50,
VGG16, EfficientNetB7 etc. for automatic grapevine
disease detection. While EfficientNetB7 achieved the
highest accuracy at 99.6%, However, challenges of this
work like limited disease scope and GPU dependency.
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Many farmers lack access to GPthe ceiling devices,
limiting practical deployment and larger models, for
example EfficientNetB7 although it has excellent
accuracy, but performance hit a ceiling after ISOMB. To
improve accuracy and computational efficiency, fusion-
based approaches have been proposed. Tyagi et al. [6]
explored the deep learning, particularly CNN in
automating the identification of medicinal plant species
and detecting diseases from leaf images. Among the
tested models, InceptionV3 outperformed VGG-16 and
VGG-19, attaining the most precision of 70.12%. While
the research effectively highlights the advantages of pre-
trained architecture and data augmentation techniques, it
also points out limitations such as moderate accuracy, a
relatively small dataset, limited training epochs, and
computational inefficiency, especially in VGG models.
The research also emphasized how fusion-based designs
can provide improved performance over single-model
architectures Yang et al. [7] introduced WaveLiteNet, a
lightweight deep learning model designed to detect and
classify five types of tea leaf disease such as Anthracnose
and Cercospora Leaf spot. The model merges 2D Discrete
Wavelet Transform with MobileNetV3 to improve
feature extensions obtained 98.70% accuracy during
testing. showing that using small models with frequency
features can make them fast and accurate. This inspires
the current study, which proposes a fusion model
combining VGG-16 and MobileNetV3, aiming to
leverage VGG-16 and MobileNetV3 to improve grape
leaf disease classification accuracy while reducing
computational cost. Moreover, the future directions and
specialized techniques, Xie et al. [8] proposed real-time
detector for grape leaf disease by applying CNN
algorithms classification, it is suitable for mobile
platform deployment. Zhang, et al. [9] presented
YOLOvV5-CA, coordinate attention into the YOLOvS
framework. for detecting Grape Downy Mildew disease.
It obtains high precision 85.59% and ran at 58.82 FPS,
demonstrating both high accuracy and speed an enhanced
model for detecting. However, its dependence on RGB
images, a single disease focus, and a limited dataset
restrict broader application. Jin et al. [10] introduces
GrapeGAN, an unsupervised image to enhancement
method designed to improve grape leaf disease
validation. Enhances images led to VGG-16 and
InceptionV1 achieving up to 96.13% accuracy. However,
dataset size was small requiring cross-validation and
model complexity posed limitations for broader
deployment. In addition to fusion and attention-based
models. Together, these studies demonstrate that while
CNN remains effective for grape leaf disease
classification, combining architectures and integrating
lightweight strategies such as MobileNet, attention
mechanisms, wavelet transforms, and GAN-based image
This upgrade might lead to easier and more scalable
solutions. for real-world use. Therefore, lightweight
models combined with fusion strategies and attention

mechanisms are promising directions, which motivates
this study.

2.1 Publicly available datasets

From review, there are four public available datasets:
Grapes Net, Grapevine , Grape Leaf Disease, and Plant
Village. This study reviews four publicly available
datasets for grape leaf image analysis in Table 1.

Table 1 Summary Dataset

Dataset Description

Grapes Net dataset has 11,000+ grape
collection images in real-world Indian
vineyards using RGB and RGB-D
(Intel RealSense D435i) cameras. It
includes multiple lighting setups,
angles, occlusions, and distances
featuring both single and multi-cluster
setups. Each image is provided with
reference data.

Grapes Net

Grapevine | Grapevine dataset includes 500 grape
leaf images, with 100 images each
from five grapes such as: ak, ala idris,
buzguluy, etc. The images are classified
into separate folders for each type, the
dataset well-suited for grape type
classification using leaf features[11].
This research uses the dataset to
evaluate the success of grape leaf
images in diagnosing grape types.

The Niphad Grape Leaf Disease
dataset have 2,726 RGB images of
grape leaves collected from vineyards
in Niphad, Maharashtra, India.
Separate into four classes: Downy
Mildew, Bacterial Rot, Powdery
Mildew, and Healthy, supporting
research in image-based grape leaf
disease classification.

The Plant Village dataset, the largest
public resource of plant disease
images, was used in this study to detect
diseases in grape leaves with high
accuracy The Plant Village dataset was
introduced by Hughes and Salathé The
dataset includes more than 50,000
images of plant leaves with different
diseases. This  study analyzed
approximately 4,000 grape leaf images,
categorized into four classes: Black rot,
Esca, Leaf blight, and healthy. The leaf
images are stored in one folder

Niphad
Grape Leaf
Disease

Plant
Village

The PlantVillage dataset was selected for this
research due to its significant scale and widespread
acceptance within the academic community. Comprising
over 4,000 images of grape disease. This dataset provides
the substantial data volume required to train robust deep
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learning models. Its frequent use is a benchmark in
numerous computer vision and agricultural technology.
The dataset's suitability is crucial, as it ensures our results
can be contextually evaluated against a broad of existing
work in plant disease detection. Figure 1 provides an
example of diseases from this data set.

Health:

Esca
Fig. 1 Exemplar of Disease in Plant Village dataset
Pictures don't depict diseases that affect grape
leaves. People who work on farms and experts who look
at items and identify them by hand often make mistakes
and take a long time. People could use pesticides
erroneously because of these faulty diagnoses, which is
terrible for the crops and the environment. Because they
all have the same symptoms, it might be hard to discern
Black Rot, Esca, and Leaf Blight from. It gets worse
because the weather, bacteria, and viruses may all change
how the leaves look. This is too complicated, and humans
can't see everything, therefore we need more advanced
technologies like deep learning to automatically collect
and understand a lot of visual information to make
diagnoses more accurate.

2.2 Algorithms

From reviews multiple deep learning architectures
widely used for image classification and plant disease
detection. The selected algorithms VGG-16,
MobileNetV3, ResNet-18, Inception-V4, and DenseNet-
121. Their performance and efficiency are compared to
identify the most suitable model. We record a related
model in leaf classification in Table 2.

This study selected several widely used deep learning
architectures to compare their performance on plant
disease detection. The VGG-16 model is CNN noted for
its simplicity and effectiveness, which comes from using
multiple 3x3 convolution layers stacked together;
however, it is a large model with many parameters and is
slow to train. In contrast, ResNet-18 is skip connections
to facilitate the training of its 18 layers, which helps avoid
the vanishing gradient problem and allows for faster
training. The Inception-V4 model, another CNN, is
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recognized for being highly efficient and accurate by
using special Inception modules that run multiple filter
sizes in parallel, though its structure is complex. Finally,
DenseNet-121 is a Densely Connected CNN where every
layer is connected to all preceding layers. This design
encourages feature reuse with fewer parameters but is
known to be memory-intensive.

Table 2 Common model in leaf disease classification

Model
VGG-16

Description

VGG-16 is a CNN-based model
known for its simple yet effective
architecture. Its key idea is using
small 3x3 convolution layers stacked
on top of each other to create a deep
network with a total of 16 weight
layers. While it is effective for tasks
like deep feature extraction, its
primary disadvantages are its large
model size, high number of
parameters, and slow training speed,
which can lead to computational
inefficiency.

Based on the provided document,
MobileNetV3 is characterized by its
"lightweight efficiency”". It is
considered a small, fast model, and is
referred to as a "lightweight strategy"
for deep learning.

ResNet-18 is a Residual Network that
has a total of 18 layers. Its
fundamental concept is the use of
"residuals" to aid in the training of
deep networks. This design helps
avoid the vanishing gradient problem,
which allows for faster training. Its
main downside is that it is considered
slightly more complex than VGG.
Inception-V4 is an Inception-based
CNN. Its core concept is the use of
special "Inception modules" that
combine multiple filter sizes in
parallel. This design makes the model
very efficient and accurate. Its
primary disadvantage is its complex
structure.

DenseNet-121 is a  Densely
Connected CNN. Its key architectural
idea is that each layer connects to all
previous layers within the network.
This design offers the advantages of
encouraging feature reuse while using
fewer parameters overall. However,
its primary drawback is that it is very
memory-intensive to run.

MobileNetV3

Resnet-18

Inception-V4

Densenet121
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3. Methodology

Fig 2 displayed full research. The initial step in
research is moving images to Image Preprocessing so
models may use them. The dataset's four classes Black
Rot, Esca, Leaf Blight, and Healthy started with different
numbers of pictures. Flipping, rotating, and scaling
photographs ensured that each class had as many as Esca.
This ensured model fairness. The research models in two
ways after preprocessing. The suggested VGG-16 and
MobileNetV3 model must be trained and evaluated first.
The second method compares VGG16 and MobileNetV3.
After that, the proposed and base models undergo a
Performance Evaluation to assess Accuracy, Fl-score,
and AUC. Result and Analysis concludes the process.
This step evaluates results in choosing the best model.

s N

Plant Village Dataset

Input Images

v

Image Preprocessing

N
v v

Proposed Model
(Training & Testing)

v v

Performance Evaluation
(Compare metrics like Accuracy, Fl-score, AUC)

Base models reference
(MobileNetV3, VGG16, etc,)

h 4

Final Result & Analysis

Fig. 2 Research Methodology framework

The initial stage involves preprocessing the Plant
Village dataset images and incorporating them to ensure
a balanced and equitable training environment. It then
presents a fusion model both with and without an
attention mechanism. This model has been trained and
evaluated using VGG-16 and MobileNetV3. The study's
most commendable aspect is its comprehensive
performance assessment, employing Accuracy, F1-score,
AUC, and Average Testing Time to provide a complete
overview. This method identifies the optimal
classification model for grape leaf diseases that is both
computationally efficient and precise.

3.1 Preprocessing process

The Plant Village dataset have all grape leaf 4,062
image divided into 4 classes disease: Black Rot, Esca,.
Leaf blight, and .Healthy. However, each class has a
different number of images. Like Black rot 1,180 image,
healthy 423 image etc. To avoid bias in model training
and Poor accuracy for minority classes therefore balance
each class has an equal number of images. and using the
number of Esca images for main because Esca is the

greatest number of images 1383 by using image
augmentation techniques such as flipping, rotation, and
scaling.

3.2 Proposed Model

The proposed model combines the best parts of
VGG-16 with MobileNetV3. The design starts by
running the VGG-16 and MobileNetV3 models on the
same input image at the same time to find various
features. We wish to combine the deep feature extraction
of VGG-16 with the lightweight efficiency of
MobileNetV3. After concatenation, the features from
both pathways are combined into a feature vector that is
more complex. Then, the model employs an attention
mechanism to pick out the most essential parts of the
unified vector that help it categorize illnesses. Finally, the
updated features are looked at by fully connected layers
of 512, 512, and 256 neurons to make the classification
result.

Concatenate Features

v

Attention mechanism

v

E
| S ]

[ )

[ OUTPUT Prediction }

I3

(3]
n
N

—

Fig. 3 Proposed model

To isolate and understand the specific contribution
of the attention mechanism, the study also evaluated a
modified version of the proposed network. This second
model, referred to as the "simple fusion" model, follows
the same initial architecture of concatenating features
from VGG-16 and MobileNetV3 but omits the attention
mechanism layer entirely. In this simplified structure, the
combined feature vector is passed directly to the dense
classification layers. Both the model with the attention
mechanism and the simple fusion model were trained and
tested, allowing for a direct comparison to quantify the
performance improvement gained by integrating the
attention component. For evaluation, we employed 10-
fold cross-validation. In each fold, 80% of the dataset was
allocated for training, 10% for validation, and 10% for
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independent testing. All reported metrics (Accuracy, F1-
score, AUC, and Testing Time) are the averages across
folds, ensuring robustness and fairness in performance
assessment.

Table 3 Hyperparameters

Hyperparameters Parameter
Batch size 32
epochs 20
Learning late le-4
k-fold 10

Table 3 Hyperparameters shows the hyperpara-
meters that were used during testing. For consistency,
these parameters are used on all of the models examined
in this study.

Attention Mechanism

To enhance the fused feature representation, we
employed a self-attention mechanism inspired by
Transformer-style attention. The concatenated feature
vector F € R7%128 i5 passed into the attention module,
which computes attention weights to emphasize
informative features and suppress redundant ones. We
adopted the scaled dot-product attention formulation
introduced in Vaswani et al [12], which defines:

. QK"
Attention(Q,K,V) = Softmax < ) 4 (1)

Nem

where Q, K, and V are linear projections of the
concatenated feature vector F, and d, is the dimension of

the key vectors. The attention-weighted output is then

multiplied elementwise with FFF, yielding a refined
representation before the classification layers.

3.3 Evaluation Matric

To evaluate the performance of each model, three
key metrics were used: Accuracy, Fl-score, and average
testing time. Based on the confusion matrix, where each
row shows predicted classes and each column shows
actual classes, these metrics are derived from the number
of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) as follows.

Accuracy = TP+ TN @)
TP + TN + FP + FN

Precision = % )

Recall = TPZ—% “)

F1 — Score = 2 xTP )

2XTP+FP+FN

Z200mm

These metrics give a complete picture of each
model's performance. Accuracy is a simple measure of
correctness, but the Fl-score balances Precision and
Recall, ensuring the model is accurate and consistent in
detecting positive cases. Additionally, average testing
time is essential for assessing model feasibility. This
integrated evaluation guarantees that the final model
balances  diagnostic  accuracy, reliability, and
computational efficiency, which is crucial for real-world
implementation.

4. Result

Based on the study's results, the fusion model with
an attention mechanism demonstrated the best
performance for grape leaf disease classification,
achieving the highest accuracy and F1-score. The fusion
model  incorporating an  attention = mechanism
outperformed all other models, including the simple
fusion model and the individual VGG-16 and
MobileNetV3 base models. The key performance metrics
for the evaluated models are summarized below:

Table 4 Performance of models

Model Accuracy | Fl-score | AUC
VGG-16 98.99 98.98 99.98
MobileNetV3 98.70 98.70 99.97
Simple-Fusion 99.22 99.22 99.99
Proposed Model 99.55 99.55 99.99

Results Table 4 demonstrate that the self-attention fusion
achieves the best performance (Accuracy = 99.55%, F1 =
99.55%, AUC = 99.99%). While VGG-16 and
MobileNetV3 alone were competitive, the fusion models
consistently outperformed single architectures. Training
history graphs illustrate the performance of four different
models over 20 epochs in terms of accuracy and loss.
1.00

0.98

0.96

0.94

Training Accuracy

— VGG-16
MobileNetV3
s Simple Fusion

0.92

0.90

Fusion with Attention mechanism

1234567 891011121314151617181920
Epoch

Fig. 2 Historical data of training accuracy

According to the training accuracy graph, all models
improved over the 20-epoch training period, with the
most significant gains occurring in the first few epochs.
Throughout the training process, the fusion with attention
mechanism model consistently achieved the highest
accuracy. The simple fusion model performed at a level
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slightly below the attention-based model. Both the VGG-
16 and MobileNetV3 models demonstrated lower
training accuracy when compared to the two fusion
models.The training loss graph demonstrates a rapid
decrease in error for all models within the initial epochs,
followed by a more gradual decline.

VGG-16
MobileNetV3
Simple Fusion

Fusion with Attention mechanism

2
S
o 0.3
g
:
B 0.2

0.1 \

0.0

1234567 891011121314151617181920

Epoch
Fig. 3 Training loss of all models

As depicted in the training loss graph, the fusion with
attention mechanism model consistently maintained the
lowest training loss, indicating it was the most effective
at minimizing errors during the training phase. The loss
for the simple fusion model was slightly higher than that
of the attention-based model. While MobileNetV3 started
with a significantly high training loss, it improved
rapidly. VGG-16 began with a lower loss than
MobileNetV3; however, it was ultimately outperformed
by both fusion models, which achieved lower final loss
values.

27.6 27.0

— — I~y =)
[=] wn o N

Overall Testing Time (seconds)

wn

Fig. 4 Testing time of learning models

This bar chart illustrates the overall testing time in
seconds for four different deep learning models: VGG-
16, MobileNetV3, simple fusion, and fusion. with
attention mechanism. The specific testing times recorded
were 23.9 seconds for VGG-16, 8.7 seconds for
MobileNetV3, 27.6 seconds for Simple Fusion, and 27.0
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seconds for Fusion with Attention mechanism. Based on
this data, MobileNetV3 is clearly the most
computationally efficient model with the shortest testing
time, while the Simple Fusion model is the least efficient,
requiring the longest time to complete the testing process.

Confusion Matrix

1200

Black rot

1000

ESCA

800

True Label

Leaf blight

-600

-400

-200

Healthy

Black rot ESCA

Leaf blight
Predicted Label

Fig. 5 Confusion Matrix of proposed model

Healthy

This confusion matrix evaluates the classification
performance of the proposed fusion with attention
mechanism model across four distinct classes: Black rot,
ESCA, Leaf blight, and Healthy. The matrix reveals that
the model correctly classified 1360 instances of Black
rot, 1377 of ESCA, 1383 of Leaf blight, and 1383 of
Healthy. Misclassifications were minimal, with the most
frequent error being the prediction of 22 Black rot
samples like ESCA. Based on this data, the model
demonstrates exceptionally high accuracy, achieving
perfect classification for the Leaf blight and Healthy
classes and showing only slight confusion between the
two disease types, Black rot and ESCA.

5. Conclusions

This study successfully developed and evaluated a
fusion model to improve the classification of grape leaf
diseases. The results conclusively show that the proposed
fusion model, which combines the VGG-16 and
MobileNetV3 architecture and incorporates an attention
mechanism, is the most effective. This model achieved
the highest performance with an accuracy of 99.55%, an
Fl-score of 99.55%, and an AUC of 99.99% While the
fusion models delivered superior accuracy, a trade-off
with computational efficiency was observed. The Fusion
with Attention mechanism model, despite its high
accuracy, had a testing time of 27.0 seconds. In contrast,
the standalone MobileNetV3 model was significantly
faster, with a testing time of only 8.7 seconds, though its
accuracy was lower at 98.70%

In conclusion, this research demonstrates that fusing
different deep learning architectures and integrating an
attention mechanism can lead to more accurate and robust
solutions for real-world agricultural challenges like grape
leaf disease detection. For future work, we aim to
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optimize the model for practical deployment on edge
devices such as Raspberry Pi or mobile phones, enabling
real-time disease detection in vineyards. Additionally, we
plan to expand comparisons to other fusion strategies,
including ResNet + MobileNet and CNN-Transformer
hybrids, and validate the approach on real-world vineyard
datasets beyond Plant Village.
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