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Abstract 
        Stress among university students has considered a 
universal public-health concern as they usually case by issues 

such as academic fatigue, depression and withdrawal. 

Therefore, unprecedented opportunities to discreetly monitor 

behavioural and linguistic stress factors presented by the 

increasing issues of smartphones and social media. This study 

presents a reproducible baseline for predicting university 

students’ stress from social media usage through a hybrid 

approach that integrates tabular behavioral features with 

textual signals derived from real-world data. The mixed-

method approach including surveys, APIs and anonymized 

social media posts was utilized to capture the dataset of 

collected 5,200 samples of undergraduate students. The data 
was handled in accordance with GDPR and PDPA rules 

whereas all the participants submitted informed consent after 

the Institutional Review Board (IRB) approved the study. 

Furthermore, four baseline models were implemented such 

as Random Forest and Logistic Regression as well as Text-

CNN and BiLSTM for textual patterns. The results suggest 

that deep learning models, particularly BiLSTM are more 

effective at capturing nuanced stress-related linguistic signals 

than classical learners, while Logistic Regression retains 

superior accuracy. In addition, the proposed baseline can 

function as an early-warning analytic instrument for 
universities to identify at-risk students and develop opportune 

strategies.   

Keywords: Student Stress; social media analytics; ROC-

AUC; calibration; deep learning; Text-CNN; BiLSTM; 

Random Forest 

1.   Introduction 

1.1 Background and Motivation 

      Among university students, stress is one of the most 

prevalent psychological challenges, frequently precipitated 

by academic demands, social pressures, and lifestyle 

imbalances. Empirical research demonstrates that sleep 

deprivation, depressive symptoms, and diminished academic 
performance have a strong connection with elevated stress 

levels [1], [2]. The mental health burden among young adults 

has been consistently emphasised by the World Health 

Organization, emphasising the necessity of preventive 

strategies that rely on modern digital technologies. In 

addition, Digital footprints captured through smartphones and 

social media offer continuous, scalable, and non-invasive 

indices of stress compared to traditional survey-based 

assessments [3], [4], [5], [6]. 

 

1.2   Stress and Digital Behavior 

        Smartphones have become pervasive sensors of student 

lifestyles that captures metrics such as screen time, overnight 

usage, and mobility. Therefore, the StudentLife project [1] 

was the initial study to demonstrate that smartphone data 

could predict stress, sleep quality, and academic performance. 
Following longitudinal studies [2], [7] have adapted these 

insights to multi-year cohorts. In addition to sensing data, 

linguistic markers from social media posts provide valuable 

insights into emotional well-being. Language features such as 

negative sentiment, fatigue lexicon, and expressions of 

academic strain have a significant correlation with stress and 

mental health outcomes in Dreaddit [3], SMHD [8], and 

newer Reddit-based benchmarks [9].  

1.3   Machine Learning for Stress Prediction 

        In the initial approaches, classical statistical and machine 

learning methods including logistic regression and tree 
ensembles are implemented [10]. Even though these models 

provided valuable insights into the importance of features and 

interpretability, their predictive capabilities regarding high-

dimensional textual data were limited. CNNs for sentence 

classification [11], BiLSTMs for sequential context modelling 

[12], and, more recently, Transformer based architectures such 

as BERT [13] and RoBERTa [14] have all demonstrated 

increased efficacy in natural language understanding including 

mental health detection tasks [15], [16]. 

1.4   Reproducibility and Transparency in AI 

        The lack of reproducibility is a substantial impediment 

in this field, as the absence of transparent methodologies for 
multiple AI studies in healthcare and mental health regarding 

the recent evaluations impedes replication and cross-study 

comparison [12]. This study provides a reproducible baseline 

pipeline that incorporates linguistic and behavioural signals, 

evaluates models with standardised metrics, and provides 

code and methodological details to address this disparity.  

1.5   Contribution of This Study 

        This paper contributes to four key aspects as follows: 

Reproducible Baseline Framework – Presents a pipeline 

that includes the collection, preprocessing modelling, 

evaluation of data and combination of tabular behavioural 
features with textual signals (Fig. 1).  

Comparative Benchmarking – Four baseline models are 

compared: Logistic Regression, Random Forest [10], Text-

CNN [11], and BiLSTM [12].  

Comprehensive Evaluation – Performance is being 

evaluated by utilizing tools such as ROC-AUC, Precision–

Recall curves, Brier scores, calibration curves, confusion 

matrices, and feature importance.  
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Future-Oriented Design – We outline pathways for 

extending this baseline to multimodal fusion (wearables + 

social media), Transformer-based modeling [14], [15], and 

fairness-aware analytics [17], [18].  

        Ultimately, this study provides both an academic 

contribution a transparent benchmark for stress prediction and 

a practical foundation for institutions to design early-warning 

systems that promote student well-being. 

2.    RELATED WORK 

2.1  Smartphone Sensing for Stress and Well-being 

       The development of mobile sensing technologies has 
altered the process by which researchers evaluate stress along 

with mental health issues. Passive smartphone data were 

found to be correlated with stress levels, academic 

engagement, and performance in the groundbreaking 

StudentLife study [1]. Since then, longitudinal studies have 

expanded this paradigm. Zhou et al. [2] conducted a five-year 

analysis of smartphone-based stress detection among college 

students, showing robust associations between nocturnal 

usage, sleep disruption, and chronic stress. Wearable-

integrated sensing has further enriched this line of research. 

For instance, Sano et al. [7] utilized smartphone activity 
patterns, accelerometer data, and heart rate data to track the 

stress trajectories of individuals. Hence, the potential of 

multimodal digital footprints for continuous stress monitoring 

in student populations is further demonstrated [6], [19]. 

2.2  Social Media Language and Mental Health Datasets 

       Comparable to sensor-based methodologies, social 

media data present a comprehensive perspective on mental 

health issues. The foundation for stress and mental health 

language analysis was established by large-scale corpora 

including Dreaddit [3] and SMHD [8]. SMHD broadened its 

scope by covering a broader variety of mental health 

concerns including anxiety and depression, whereas 
Dreaddit focused on Reddit forums that engaged in 

discussions about stress-related events. In addition, 

benchmark datasets that combine Reddit mental health 

postings have been recently introduced by Zhang et al. [9]. 

Advancements in NLP have enabled the development of 

specific models for psychological inference, which allowed 

for the fine-grained detection of sentiment and emotion from 

online text [15]. As a result, social media functions as a 

supplementary instrument to smartphone sensing, as it 

monitors the expressive and emotive aspects of stress that 

may not be readily apparent in simple behavioural data. 

2.3  Classical Machine Learning Approaches 

       The initial research on stress prediction was based on 

model-based interpretation that were capable of handling 

structured behavioural data. Under the appropriate 

regularization, Logistic Regression yields probabilistic 

predictions and well calibrated results [19]. Random Forest 

[10] was established as a robust non-linear baseline. For 

instance, studies that utilized Random Forest to analyze 

mobile data identified nocturnal screen activity, GPA, and 

diminished sleep as critical stress predictors [20]. 

Interpretability is a critical factor in institutional applications, 

and the transparency of these models was advantageous. 

Nevertheless, the adoption of deep learning approaches was 

driven by their limited ability to model sequential and high-

dimensional textual signals. 

2.4   Deep Learning for Stress and Mental Health Prediction 

       The field of computational mental health has 

experienced major strides because of the implementation of 

deep learning methods. The foundation for local feature 

capture in psychological text was established by Kim's CNN 

for sentence classification [11], which captured n-gram 

patterns associated with tension expression. Graves and 

Schmidhuber’s BiLSTM [12] introduced bidirectional 
modelling of sequential dependencies, which allowed for a 

more precise interpretation of affective expressions that were 

rich in context. Transformer architectures, including BERT 

[13] and RoBERTa [14], have obtained state-of-the-art results 

in mental health NLP tasks, such as stress detection and 

suicide risk prediction [15]. These architectures have been 

developed by building on these foundations. The value of 

adapting general-purpose Transformers to mental health 

contexts is demonstrated by pretrained domain-specific 

variants, such as MentalBERT [5], [14].  

2.5  Multimodal Fusion Approaches 
       A growing number of recent studies have emphasised the 

integration of smartphone sensing, wearables, and social 

media text to achieve multimodal convergence. Ma et al. [20] 

introduced a multimodal architecture that substantially 

outperformed unimodal baselines by integrating linguistic 

features with physiological signals for stress detection. In a 

similar vein, Althoff et al. [14] illustrated that it is possible to 

forecast mental health outcomes at the population level by 

combining large-scale behavioural signals from online 

interactions with wearable data. However, reproducible 

baselines that integrate text and tabular features remain 

scarce. This gap motivates the current study’s focus on an 
open, reproducible model as a foundation for future 

multimodal extensions. 

2.6  Reproducibility and Transparency in AI Research 

       The significance of reproducibility in computational 

healthcare is being progressively emphasised by an 

expanding corpus of work. In their systematic review of 

machine learning applications in healthcare, Zeni et al. [21] 

determined that numerous studies were plagued by a lack of 

transparent code, data availability, or methodological clarity, 

which restricted their long-term impact. Fairness 

considerations have also become a critical dimension as 
predictive models may inadvertently incorporate 

demographic biases [17]. Recent research proposes the 

development of reproducible pipelines that encompass not 

only algorithmic details but also principles of ethics for 

subgroup validation, anonymization, and informed consent 

[17], [21].  

        In conclusion, antecedent research has shown that 

smartphone sensing provides objective behavioural correlates 

of stress, while social media datasets capture its expressive 

and linguistic dimensions. Even though there are still 

constrained by impartiality and reproducibility, several 

studies are still made in deep learning.  
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3.    THEORETICAL BACKGROUND 

        The demand resources perspective and the transactional 

stress-appraisal framework are stress theories that suggest that 

stress is the result of an apparent disparity between resources 

(e.g., sleep, social support) and demands (e.g., exams, 

deadlines) among students. Logistic Regression is an 

automated learning technique that predicts a log-odds 

function and enables accurate probabilities when subjected to 

appropriate regularization and parameter scaling. Random 

Forest [10] aggregates multiple decision trees to model 

nonlinear interactions and yields feature-importance scores. 
For text, the Text-CNN captures local n-gram patterns via 1D 

convolution and max pooling, whereas BiLSTM models 

long-range dependencies in both directions. These 

complementary inductive biases motivate comparing 

classical and deep learners side-by-side. 

4.    METHODOLOGY 

       The methodological framework of this study was 

designed to ensure transparency, reproducibility, and 

comparability across future research in computational stress 

prediction. The end-to-end pipeline are depicted in the 

following: 
4.1  Data Collection 

       The dataset comprises 5,200 samples that were gathered 

from undergraduate students among the ages of 18 and 25 

across all faculties of the university. The data collection was 

approved through the Institutional Review Board (IRB) of the 

host university. The study’s objectives, data use, anonymity 

protections, and the possibility to withdraw during the data 

collection process.  

Behavioral Data Derived from Surveys: Participants filled 

out formal surveys detailing their daily screen time, nighttime 

usage ratio, hours of sleep, GPA, and academic burden [1], 

[2], [7].  
Platform API Data: With explicit participant authorization, 

usage logs were collected via platform-provided APIs (e.g., 

Facebook, Twitter/X, Instagram, TikTok). The data 

encompassed posting frequency, comment and reply counts 

and engagement indicators such as likes and shares.  

Social Media Textual Data: Participants provided approval 

to share their posts and comments. All textual data were 

anonymized, encrypted, and devoid of personal identifiers 

prior to analysis. Linguistic attributes including sentiment 

polarity, toxicity, and academic stress lexicon were retrieved. 

Sensitive content was managed in compliance with GDPR 
and PDPA criteria [17], [21].  

Ethical Safeguards: Participation in this study was 

completely voluntary, and all participants had the freedom to 

withdraw at any point without consequence. Participants were 

explicitly advised that no personally identifiable information 

(PII) will be disseminated or shared, and that their 

contributions would be utilized exclusively for academic 

reasons. The comprehensive data collecting and management 

method adhered to Institutional Review Board (IRB) 

standards and conformed to international and national data 

protection laws, including the General Data Protection 

Regulation (GDPR) and the Personal Data Protection Act 
(PDPA). 

4.2  Preprocessing 

       Data preprocessing was executed in two parallel streams 

to guarantee comparability among models:  

Behavioral Features: Continuous variables were 

standardised by z score normalization to ensure comparability 

across scales. Categorical variables including field of study 

were subjected to immediate encoding.  

Textual Features: Posts underwent tokenization, conversion 

to lowercase, and removal of stop words. Uncommon words 

were omitted, and sequences were either trimmed or extended 

to a uniform length of 200 tokens. Numerical embeddings 
were produced utilizing Keras Text Vectorization with a 

vocabulary size of 20,000 tokens. This configuration 

harmonizes efficiency with expressive capability, allowing 

subsequent models to acquire syntactic and semantic stress-

related patterns [11], [12]. Preprocessing also encompassed 

anonymization and data protection regulations including 

GDPR and PDPA [17]. 

4.3  Feature Extraction 

       Following preprocessing, features were categorized into 

two groups: Tabular Features: Capturing quantitative 

behavioral indicators such as daily screen time, nocturnal 
usage, GPA, sleep hours, and interaction frequency. 

Textual Features: Capturing qualitative signals from 

language use including polarity (positive/negative), toxicity, 

and presence of stress related lexicon.  

       This representation ensured the capacity to evaluate stress 

from external activity and internal expression aligned with 

recent multimodal frameworks [4], [20]. 

4.4  Modeling Approaches 

       Four baseline models were implemented as follows: 

Classical ML Approaches  

Logistic Regression (LogReg): Utilized for tabular features 

with L2 regularization. This model was selected for its 
interpretability and strong probability calibration [19].  

Random Forest (RF): Configured with 200 trees and a 

maximum depth of 20, optimized to identify non-linear 

interactions and assess feature significance [10].  

Deep Learning Approaches  

Text-CNN: An embedding layer of 128 dimensions, 

succeeded by numerous 1D convolutional filters of sizes 3, 4, 

and 5, accompanied with max pooling layers to capture local 

n-gram patterns. The output was processed through thick 

layers utilizing ReLU activation, which result in a final 

sigmoid output [11].  
BiLSTM: A bidirectional LSTM layer with 64 units 

effectively captured long-range contextual dependencies in 

both forward and backward orientations, including dropout 

regularization and dense layers with sigmoid activation [12]. 

All deep models were trained using the Adam optimizer 

(learning rate 0.001), an early stopping criterion based on 

validation loss. 

4.5  Evaluation Metrics 

       To provide a holistic view of model performance, five 

complementary indicators were employed as follows:  

ROC-AUC: Assesses the discriminative capacity between 

stressed and non-stressed categories (Fig. 2).  
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Precision–Recall Curves (PR-AUC): Emphasizes 

performance in the context of class imbalance (Fig. 3).  

Confusion Matrices: Offer detailed error analysis across 

categorization thresholds (Figs. 4–5).  

Brier Score and Calibration Curves: Assess probability 

calibration, ensuring forecasted probabilities accurately 

represent actual likelihoods (Fig. 6).  

Feature Importance: Derived from Random Forest to 

ascertain main predictors, including nocturnal usage and sleep 

decrease (Fig. 7). This thorough evaluation guarantees that 

models are both accurate and properly calibrated and 
interpretable [10], [21]. 

4.6  Reproducibility Measures 

        To ensure reproducibility, the study offers:  

Open-source Code and Figures: Allowing other researchers 

to replicate preprocessing, modeling, and evaluation.  

Documented Pipeline: Comprehensive sequential procedure 

consistent with open scientific principles [21].  

Standardized Metrics: Allowing cross-study comparison 

and benchmarking. By offering a transparent methodology, 

the study addresses reproducibility gaps identified in mental 

health AI research [17], [21].  
Summary of Methodology: The proposed methodology 

integrates behavioral and textual data, applies both classical and 

deep learning models, and evaluates them with comprehensive 

metrics. This reproducible baseline provides a foundation for 

extending stress prediction pipelines to multimodal fusion and 

fairness-aware applications [4], [17], [20]. 

 

Fig. 1 The tabular behavioral data and textual linguistic 

features integrations. 

5.    EXPERIMENTAL RESULTS 

       The experimental assessment juxtaposed the efficacy of 

traditional machine learning models (Logistic Regression, 

Random Forest) against deep learning frameworks (Text-

CNN, BiLSTM) utilizing both tabular and textual information. 

In Fig. 1, it demonstrates the data from 5,200 students. After 

the data processing, features were derived as beahvioural 
indicators and textual language, which were employed to train 

the Logistic Regression, Random Forest, and Text-CNN and 

BiLSTM models. Hence, the performance is assessed by 

ROC-AUC, PR-AUC, calibration curves, confusion metrices 

and feature analyses. Hence, results were evaluated using 

several metrics to assess discriminative performance, 

calibration, and interpretability [22]. 

5.1  ROC and Precision–Recall Analysis 

       Fig. 2 demonstrates that Logistic Regression attained the 

maximum area under the ROC curve (AUC = 0.865), Random 

Forest (AUC = 0.828). This result indicates that Logistic 

Regression, despite its simplicity, has enhanced discriminative 

capability on tabular behavioural characteristics. 

 

Fig. 2 ROC curves across models 

 

Fig. 3 Precision-Recall curves across models 

        The accuracy-Recall (PR) curves depicted in Fig. 3 

supported these results by revealing that Logistic Regression 

achieved an average accuracy (AP) of 0.875, whereas 
Random Forest attained 0.835. The superior PR-AUC 

suggests that Logistic Regression is particularly well-suited to 

handling imbalanced distributions of stress versus non-stress 

classes [10], [19].  

 

Fig. 4 Confusion Matrix – Random Forest and Logistic 

Regression  

5.2  Confusion Matrix Analysis 

       Error distribution across classes was examined using 

confusion matrices (Fig. 4). Logistic Regression accurately 

identified 475 low/moderate stress cases and 537 high stress 

cases, exhibiting approximately equal misclassification rates. 

In contrast to, Random Forest misclassified a greater 
percentage of low/moderate instances, indicating that its 

decision boundaries were less accurate on this dataset. Such 

constrains is presented due to the overlapping distributions of 

behavioural characteristics such as the result of screen time or 

the unreliability of self-report sleep patterns. While Random 

Forest is intended to identify complex interactions of non-

linear dataset, the tree ensembles demonstrate the tendencies 

to overfit variations instead of recognizing boarder global 

trends. As for the Logistic Rgestions, the utilization on 

standardised tabular variables provides more straightforward 

and reliable linear boundaries that creates better fundamental 
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of dataset. Therefore, these findings reinforce the importance 

of probabilistic calibration in sensitive applications such as 

mental health prediction [6], [17]. 

5.3  Calibration Performance 

       The calibration curves in Fig. 5 showed that Logistic 

Regression displayed higher probability calibration, attaining 

a Brier score of 0.150, in contrast to Random Forest's score of 

0.170. Appropriately calibrated probabilities are crucial for 

early-warning systems, as they directly determine action 

levels. Deep learning models, while achieving strong 

discrimination, necessitating explicit calibration methods in  
Future extensions [14], [15].  

 

 

Fig. 5 Calibration curves 

5.4  Feature Importance 

       Random Forest’s feature importance analysis (Fig. 6) 

emphasized features such as screen time, sleep hours, 

negative sentiment, and social support as the most significant 

predictors of stress. These findings are aligned prior literature 

on digital mental health, which demonstrates a strong 

correlation between elevated stress levels, nighttime use and 

diminished sleep [2], [7], [20]. Furthermore, the linguistic 
markers are reliable indicators of psychological distress is 

also consistent with negative and toxicity in language 

features. [3], [8], [15]. 

 

Fig. 6 Random Forest feature importance 

5.5   Case Study of Predictions 

         Qualitative interpretability was illustrated through ten 

example predictions from the BiLSTM model (Fig. 7). They 

were designated as stressed with a high likelihood (>0.85). In 
contrast, neutral or positive posts showing social events or 

informal updates were accurately classified as non-stressed. 

Some unclear messages with diverse emotional tones were 

misclassified, showing the difficulty of contextual complexity 

[11], [12], [15]. In conclusion, Logistic Regression attained 

the optimal equilibrium between discriminating and 

probability calibration, but BiLSTM demonstrated enhanced 

efficacy in modelling linguistic complexity. These 

complementary outcomes highlight the necessity of 

comparing classical and deep learning models within a 

unified and reproducible framework [4], [20], [21]. 

 

Fig. 7 Ten example predictions (best model). 

6.    DISCUSSION 

       The findings of this study demonstrate that both 

behavioral and linguistic signals contribute valuable and 

complementary information to the prediction of student 
stress. Logistic Regression outperformed other models in 

ROC-AUC and PR AUC metrics, while exhibiting optimal 

calibration, as indicated by its lowest Brier score (0.150). 

These findings confirm the recognised efficacy of linear 

models with standardised variables in delivering dependable 

probability estimates [10], [19]. Conversely, Random Forest 

exhibited suboptimal calibration, however it provided 

interpretable feature significance ratings consistent with 

existing research on stress correlates [2], [7], [20].  

       Deep learning models especially BiLSTM, displayed 

efficacy in managing contextual subtleties in student-
generated text. As seen in Fig. 10, BiLSTM effectively 

differentiated intricate emotional expressions and colloquial 

stress signals, abilities that traditional learners generally lack 

[11], [12]. Calibration curves revealed that deep learning 

models had a tendency towards overconfidence, aligning with 

previous studies in NLP-based health prediction [15]. This 

indicates that calibration methods, like temperature scaling or 

isotonic regression must be integrated into future 

implementations to guarantee dependable probability outputs 

[17], [21].  

       The Random Forest significance plot identified 

behavioural variables aligned with the theoretical framework 
of stress resources [2]. This improves the practical 

applicability of the baseline, enabling institutions to focus 

interventions. However, the dependence on real-world 

through self-reports, APIs, and social media material has 

drawbacks including reporting bias, demographics 

overrepresentation, and platform- distortion. Recent research 

indicates that AI models for mental health can incorporate 

demographic biases, resulting in disparate performance 

among subgroups [17].  

       The study did not stratify results by gender, 

socioeconomic background, or cultural factors, which limits 
its fairness evaluation. Future research must incorporate 

subgroup analysis, fairness-aware modeling, and privacy-

preserving analytics [15], [17], [18]. Furthermore, all data 

management with GDPR and PDPA regulations to ensure 

permission and anonymity [21].  

       The findings affirm the synergistic advantages of 

classical and deep learning models, while revealing 

constraints concerning calibration, fairness, and ecological 

validity. By tackling these problems, next developments can 

enhance the replicable baseline to promote multimodal, 

ethical, and egalitarian stress prediction systems [4], [20]. 
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7.    CONCLUSION AND FUTURE WORK 

       The study introduces a baseline for predicting student 

stress from social media usage, integrating behavioral and 

textual signals into classical machine learning and deep 

learning models. Results demonstrated that Logistic 

Regression provided the most reliable probability calibration 

and robust discriminative performance on tabular features, 

while BiLSTM demonstrated superior capacity to interpret 

context-dependent and stress-related expressions. Random 

Forest offered interpretable feature importance, revealing 

predictors consistent with stress theories such as nocturnal 
usage, reduced sleep, and negative sentiment [2], [7], [20].  

        The reproducibility of the proposed baseline is its central 

contribution as it consists of the growing demand for 

transparency in AI research by detailing the end-to-end 

pipeline, sharing open-source code, and utilizing standardised 

evaluation metrics [21]. Furthermore, this work provides 

practical implications for universities seeking systems that 

identify at-risk students while respecting ethical standards 

[17], [21].  

        To confirm external validity, the study should validate 

with real-world, longitudinal datasets. Secondly, to gather 
stress trajectories, multimodal fusion approaches that 

integrate smartphone sensing and linguistic data should be 

pursued [4], [7], [20]. Third, the incorporation of 

Transformer-based architectures including BERT [13], 

RoBERTa [14], and domain variants as MentalBERT [15] 

can improve the language modelling for stress-related 

discourse. To guarantee equitable deployment, this should 

prioritise privacy analytics and fairness-aware machine 

learning [17], [18].  

        In conclusion, this reproducible baseline functions as 

both a practical foundation, making it possible to create stress 

prediction systems that are ethically responsible and 
multimodal. This study illustrates the feasibility of collecting 

and analysing empirical behavioural and linguistic data while 

adhering to stringent ethical and privacy procedures. 
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