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Abstract

Stress among university students has considered a
universal public-health concern as they usually case by issues
such as academic fatigue, depression and withdrawal.
Therefore, unprecedented opportunities to discreetly monitor
behavioural and linguistic stress factors presented by the
increasing issues of smartphones and social media. This study
presents a reproducible baseline for predicting university
students’ stress from social media usage through a hybrid
approach that integrates tabular behavioral features with
textual signals derived from real-world data. The mixed-
method approach including surveys, APIs and anonymized
social media posts was utilized to capture the dataset of
collected 5,200 samples of undergraduate students. The data
was handled in accordance with GDPR and PDPA rules
whereas all the participants submitted informed consent after
the Institutional Review Board (IRB) approved the study.
Furthermore, four baseline models were implemented such
as Random Forest and Logistic Regression as well as Text-
CNN and BiLSTM for textual patterns. The results suggest
that deep learning models, particularly BiLSTM are more
effective at capturing nuanced stress-related linguistic signals
than classical learners, while Logistic Regression retains
superior accuracy. In addition, the proposed baseline can
function as an early-warning analytic instrument for
universities to identify at-risk students and develop opportune
strategies.

Keywords: Student Stress; social media analytics; ROC-
AUC; calibration; deep learning; Text-CNN; BiLSTM;
Random Forest

1. Introduction
1.1 Background and Motivation

Among university students, stress is one of the most
prevalent psychological challenges, frequently precipitated
by academic demands, social pressures, and lifestyle
imbalances. Empirical research demonstrates that sleep
deprivation, depressive symptoms, and diminished academic
performance have a strong connection with elevated stress
levels [1], [2]. The mental health burden among young adults
has been consistently emphasised by the World Health
Organization, emphasising the necessity of preventive
strategies that rely on modern digital technologies. In
addition, Digital footprints captured through smartphones and
social media offer continuous, scalable, and non-invasive
indices of stress compared to traditional survey-based
assessments [3], [4], [5], [6].

1.2 Stress and Digital Behavior

*Corresponding Author

Smartphones have become pervasive sensors of student
lifestyles that captures metrics such as screen time, overnight
usage, and mobility. Therefore, the StudentLife project [1]
was the initial study to demonstrate that smartphone data
could predict stress, sleep quality, and academic performance.
Following longitudinal studies [2], [7] have adapted these
insights to multi-year cohorts. In addition to sensing data,
linguistic markers from social media posts provide valuable
insights into emotional well-being. Language features such as
negative sentiment, fatigue lexicon, and expressions of
academic strain have a significant correlation with stress and
mental health outcomes in Dreaddit [3], SMHD [8], and
newer Reddit-based benchmarks [9].

1.3 Machine Learning for Stress Prediction

In the initial approaches, classical statistical and machine
learning methods including logistic regression and tree
ensembles are implemented [10]. Even though these models
provided valuable insights into the importance of features and
interpretability, their predictive capabilities regarding high-
dimensional textual data were limited. CNNs for sentence
classification [11], BILSTMs for sequential context modelling
[12], and, more recently, Transformer based architectures such
as BERT [13] and RoBERTa [14] have all demonstrated
increased efficacy in natural language understanding including
mental health detection tasks [15], [16].

1.4 Reproducibility and Transparency in Al

The lack of reproducibility is a substantial impediment
in this field, as the absence of transparent methodologies for
multiple Al studies in healthcare and mental health regarding
the recent evaluations impedes replication and cross-study
comparison [12]. This study provides a reproducible baseline
pipeline that incorporates linguistic and behavioural signals,
evaluates models with standardised metrics, and provides
code and methodological details to address this disparity.

1.5 Contribution of This Study

This paper contributes to four key aspects as follows:
Reproducible Baseline Framework — Presents a pipeline
that includes the collection, preprocessing modelling,
evaluation of data and combination of tabular behavioural
features with textual signals (Fig. 1).
Comparative Benchmarking — Four baseline models are
compared: Logistic Regression, Random Forest [10], Text-
CNN [11], and BiLSTM [12].
Comprehensive Evaluation — Performance is being
evaluated by utilizing tools such as ROC-AUC, Precision—
Recall curves, Brier scores, calibration curves, confusion
matrices, and feature importance.
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Future-Oriented Design — We outline pathways for
extending this baseline to multimodal fusion (wearables +
social media), Transformer-based modeling [14], [15], and
faimess-aware analytics [17], [18].

Ultimately, this study provides both an academic
contribution a transparent benchmark for stress prediction and
a practical foundation for institutions to design early-wamning
systems that promote student well-being,

2. RELATED WORK
2.1 Smartphone Sensing for Stress and Well-being
The development of mobile sensing technologies has
altered the process by which researchers evaluate stress along
with mental health issues. Passive smartphone data were
found to be correlated with stress levels, academic
engagement, and performance in the groundbreaking
StudentLife study [1]. Since then, longitudinal studies have
expanded this paradigm. Zhou et al. [2] conducted a five-year
analysis of smartphone-based stress detection among college
students, showing robust associations between nocturnal
usage, sleep disruption, and chronic stress. Wearable-
integrated sensing has further enriched this line of research.
For instance, Sano et al. [7] utilized smartphone activity
patterns, accelerometer data, and heart rate data to track the
stress trajectories of individuals. Hence, the potential of
multimodal digital footprints for continuous stress monitoring
in student populations is further demonstrated [6], [19].

2.2 Social Media Language and Mental Health Datasets
Comparable to sensor-based methodologies, social
media data present a comprehensive perspective on mental
health issues. The foundation for stress and mental health
language analysis was established by large-scale corpora
including Dreaddit [3] and SMHD [8]. SMHD broadened its
scope by covering a broader variety of mental health
concerns including anxiety and depression, whereas
Dreaddit focused on Reddit forums that engaged in
discussions about stress-related events. In addition,
benchmark datasets that combine Reddit mental health
postings have been recently introduced by Zhang et al. [9].
Advancements in NLP have enabled the development of
specific models for psychological inference, which allowed
for the fine-grained detection of sentiment and emotion from
online text [15]. As a result, social media functions as a
supplementary instrument to smartphone sensing, as it
monitors the expressive and emotive aspects of stress that
may not be readily apparent in simple behavioural data.

2.3 Classical Machine Learning Approaches

The initial research on stress prediction was based on
model-based interpretation that were capable of handling
structured behavioural data. Under the appropriate
regularization, Logistic Regression yields probabilistic
predictions and well calibrated results [19]. Random Forest
[10] was established as a robust non-linear baseline. For
instance, studies that utilized Random Forest to analyze
mobile data identified nocturnal screen activity, GPA, and
diminished sleep as critical stress predictors [20].
Interpretability is a critical factor in institutional applications,
and the transparency of these models was advantageous.

Nevertheless, the adoption of deep learning approaches was
driven by their limited ability to model sequential and high-
dimensional textual signals.

2.4 Deep Learning for Stress and Mental Health Prediction

The field of computational mental health has
experienced major strides because of the implementation of
deep learning methods. The foundation for local feature
capture in psychological text was established by Kim's CNN
for sentence classification [11], which captured n-gram
patterns associated with tension expression. Graves and
Schmidhuber’s BiLSTM [12] introduced bidirectional
modelling of sequential dependencies, which allowed for a
more precise interpretation of affective expressions that were
rich in context. Transformer architectures, including BERT
[13] and RoBERTa [14], have obtained state-of-the-art results
in mental health NLP tasks, such as stress detection and
suicide risk prediction [15]. These architectures have been
developed by building on these foundations. The value of
adapting general-purpose Transformers to mental health
contexts is demonstrated by pretrained domain-specific
variants, such as MentalBERT [5], [14].

2.5 Multimodal Fusion Approaches

A growing number of recent studies have emphasised the
integration of smartphone sensing, wearables, and social
media text to achieve multimodal convergence. Ma et al. [20]
introduced a multimodal architecture that substantially
outperformed unimodal baselines by integrating linguistic
features with physiological signals for stress detection. In a
similar vein, Althoff et al. [14] illustrated that it is possible to
forecast mental health outcomes at the population level by
combining large-scale behavioural signals from online
interactions with wearable data. However, reproducible
baselines that integrate text and tabular features remain
scarce. This gap motivates the current study’s focus on an
open, reproducible model as a foundation for future
multimodal extensions.

2.6 Reproducibility and Transparency in AI Research

The significance of reproducibility in computational
healthcare is being progressively emphasised by an
expanding corpus of work. In their systematic review of
machine learning applications in healthcare, Zeni et al. [21]
determined that numerous studies were plagued by a lack of
transparent code, data availability, or methodological clarity,
which restricted their long-term impact. Fairness
considerations have also become a critical dimension as
predictive models may inadvertently incorporate
demographic biases [17]. Recent research proposes the
development of reproducible pipelines that encompass not
only algorithmic details but also principles of ethics for
subgroup validation, anonymization, and informed consent
[17], [21].

In conclusion, antecedent research has shown that
smartphone sensing provides objective behavioural correlates
of stress, while social media datasets capture its expressive
and linguistic dimensions. Even though there are still
constrained by impartiality and reproducibility, several
studies are still made in deep learning.
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3. THEORETICAL BACKGROUND

The demand resources perspective and the transactional
stress-appraisal framework are stress theories that suggest that
stress is the result of an apparent disparity between resources
(e.g., sleep, social support) and demands (e.g., exams,
deadlines) among students. Logistic Regression is an
automated leaming technique that predicts a log-odds
function and enables accurate probabilities when subjected to
appropriate regularization and parameter scaling. Random
Forest [10] aggregates multiple decision trees to model
nonlinear interactions and yields feature-importance scores.
For text, the Text-CNN captures local n-gram patterns via 1D
convolution and max pooling, whereas BiLSTM models
long-range dependencies in both directions. These
complementary inductive biases motivate comparing
classical and deep learners side-by-side.

4. METHODOLOGY

The methodological framework of this study was
designed to ensure transparency, reproducibility, and
comparability across future research in computational stress
prediction. The end-to-end pipeline are depicted in the
following;
4.1 Data Collection

The dataset comprises 5,200 samples that were gathered
from undergraduate students among the ages of 18 and 25
across all faculties of the university. The data collection was
approved through the Institutional Review Board (IRB) of the
host university. The study’s objectives, data use, anonymity
protections, and the possibility to withdraw during the data
collection process.
Behavioral Data Derived from Surveys: Participants filled
out formal surveys detailing their daily screen time, nighttime
usage ratio, hours of sleep, GPA, and academic burden [1],
(2], [7].
Platform API Data: With explicit participant authorization,
usage logs were collected via platform-provided APIs (e.g.,
Facebook, Twitter/X, Instagram, TikTok). The data
encompassed posting frequency, comment and reply counts
and engagement indicators such as likes and shares.
Social Media Textual Data: Participants provided approval
to share their posts and comments. All textual data were
anonymized, encrypted, and devoid of personal identifiers
prior to analysis. Linguistic attributes including sentiment
polarity, toxicity, and academic stress lexicon were retrieved.
Sensitive content was managed in compliance with GDPR
and PDPA criteria [17], [21].
Ethical Safeguards: Participation in this study was
completely voluntary, and all participants had the freedom to
withdraw at any point without consequence. Participants were
explicitly advised that no personally identifiable information
(PI) will be disseminated or shared, and that their
contributions would be utilized exclusively for academic
reasons. The comprehensive data collecting and management
method adhered to Institutional Review Board (IRB)
standards and conformed to international and national data
protection laws, including the General Data Protection
Regulation (GDPR) and the Personal Data Protection Act
(PDPA).

4.2 Preprocessing

Data preprocessing was executed in two parallel streams
to guarantee comparability among models:
Behavioral Features: Continuous variables were
standardised by z score normalization to ensure comparability
across scales. Categorical variables including field of study
were subjected to immediate encoding.
Textual Features: Posts underwent tokenization, conversion
to lowercase, and removal of stop words. Uncommon words
were omitted, and sequences were either trimmed or extended
to a uniform length of 200 tokens. Numerical embeddings
were produced utilizing Keras Text Vectorization with a
vocabulary size of 20,000 tokens. This configuration
harmonizes efficiency with expressive capability, allowing
subsequent models to acquire syntactic and semantic stress-
related patterns [11], [12]. Preprocessing also encompassed
anonymization and data protection regulations including
GDPR and PDPA [17].

4.3 Feature Extraction

Following preprocessing, features were categorized into
two groups: Tabular Features: Capturing quantitative
behavioral indicators such as daily screen time, nocturnal
usage, GPA, sleep hours, and interaction frequency.
Textual Features: Capturing qualitative signals from
language use including polarity (positive/negative), toxicity,
and presence of stress related lexicon.

This representation ensured the capacity to evaluate stress
from external activity and internal expression aligned with
recent multimodal frameworks [4], [20].

4.4 Modeling Approaches

Four baseline models were implemented as follows:
Classical ML Approaches
Logistic Regression (LogReg): Utilized for tabular features
with L2 regularization. This model was selected for its
interpretability and strong probability calibration [19].
Random Forest (RF): Configured with 200 trees and a
maximum depth of 20, optimized to identify non-linear
interactions and assess feature significance [10].
Deep Learning Approaches
Text-CNN: An embedding layer of 128 dimensions,
succeeded by numerous 1D convolutional filters of sizes 3, 4,
and 5, accompanied with max pooling layers to capture local
n-gram patterns. The output was processed through thick
layers utilizing ReLU activation, which result in a final
sigmoid output [11].
BiLSTM: A bidirectional LSTM layer with 64 units
effectively captured long-range contextual dependencies in
both forward and backward orientations, including dropout
regularization and dense layers with sigmoid activation [12].
All deep models were trained using the Adam optimizer
(learning rate 0.001), an early stopping criterion based on
validation loss.

4.5 Evaluation Metrics

To provide a holistic view of model performance, five
complementary indicators were employed as follows:
ROC-AUC: Assesses the discriminative capacity between
stressed and non-stressed categories (Fig. 2).
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Precision—Recall Curves (PR-AUC): Emphasizes
performance in the context of class imbalance (Fig. 3).
Confusion Matrices: Offer detailed error analysis across
categorization thresholds (Figs. 4-5).

Brier Score and Calibration Curves: Assess probability
calibration, ensuring forecasted probabilities accurately
represent actual likelihoods (Fig. 6).

Feature Importance: Derived from Random Forest to
ascertain main predictors, including nocturnal usage and sleep
decrease (Fig. 7). This thorough evaluation guarantees that
models are both accurate and properly calibrated and
interpretable [10], [21].

4.6 Reproducibility Measures

To ensure reproducibility, the study offers:
Open-source Code and Figures: Allowing other researchers
to replicate preprocessing, modeling, and evaluation.
Documented Pipeline: Comprehensive sequential procedure
consistent with open scientific principles [21].
Standardized Metrics: Allowing cross-study comparison
and benchmarking. By offering a transparent methodology,
the study addresses reproducibility gaps identified in mental
health Al research [17], [21].
Summary of Methodology: The proposed methodology
integrates behavioral and textual data, applies both classical and
deep learning models, and evaluates them with comprehensive
metrics. This reproducible baseline provides a foundation for
extending stress prediction pipelines to multimodal fusion and
fairness-aware applications [4], [17], [20].

Data Collection
(N=5200 samples)

Preprocessing

(cleaning, tokenization,
normalization)

Feature Extraction
(Tabular + Text)

Can ~
Classical ML Deep Learning
(LogReg, RF) (CNN, RNN)

Evaluation
(Accuracy, F1,
Confusion Matrix)

Fig. 1 The tabular behavioral data and textual linguistic
features integrations.

5. EXPERIMENTAL RESULTS

The experimental assessment juxtaposed the efficacy of
traditional machine learning models (Logistic Regression,
Random Forest) against deep learning frameworks (Text-
CNN, BiLSTM) utilizing both tabular and textual information.
In Fig. 1, it demonstrates the data from 5,200 students. After
the data processing, features were derived as beahvioural
indicators and textual language, which were employed to train
the Logistic Regression, Random Forest, and Text-CNN and
BiLSTM models. Hence, the performance is assessed by
ROC-AUC, PR-AUC, calibration curves, confusion metrices
and feature analyses. Hence, results were evaluated using
several metrics to assess discriminative performance,
calibration, and interpretability [22].

5.1 ROC and Precision—Recall Analysis
Fig. 2 demonstrates that Logistic Regression attained the

Z200mm

maximum area under the ROC curve (AUC =0.865), Random
Forest (AUC = 0.828). This result indicates that Logistic
Regression, despite its simplicity, has enhanced discriminative
capability on tabular behavioural characteristics.

ROC Curves
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Fig. 2 ROC curves across models
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Fig. 3 Precision-Recall curves across models

The accuracy-Recall (PR) curves depicted in Fig. 3
supported these results by revealing that Logistic Regression
achieved an average accuracy (AP) of 0.875, whereas
Random Forest attained 0.835. The superior PR-AUC
suggests that Logistic Regression is particularly well-suited to
handling imbalanced distributions of stress versus non-stress
classes [10], [19].

Confusion Matrix - RandomForest Confusion Matrix - LogReg
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Fig. 4 Confusion Matrix — Random Forest and Logistic
Regression

5.2 Confusion Matrix Analysis

Error distribution across classes was examined using
confusion matrices (Fig. 4). Logistic Regression accurately
identified 475 low/moderate stress cases and 537 high stress
cases, exhibiting approximately equal misclassification rates.
In contrast to, Random Forest misclassified a greater
percentage of low/moderate instances, indicating that its
decision boundaries were less accurate on this dataset. Such
constrains is presented due to the overlapping distributions of
behavioural characteristics such as the result of screen time or
the unreliability of self-report sleep patterns. While Random
Forest is intended to identify complex interactions of non-
linear dataset, the tree ensembles demonstrate the tendencies
to overfit variations instead of recognizing boarder global
trends. As for the Logistic Rgestions, the utilization on
standardised tabular variables provides more straightforward
and reliable linear boundaries that creates better fundamental
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of dataset. Therefore, these findings reinforce the importance
of probabilistic calibration in sensitive applications such as
mental health prediction [6], [17].

5.3 Calibration Performance

The calibration curves in Fig. 5 showed that Logistic
Regression displayed higher probability calibration, attaining
a Brier score 0of 0.150, in contrast to Random Forest's score of
0.170. Appropriately calibrated probabilities are crucial for
early-warning systems, as they directly determine action
levels. Deep learning models, while achieving strong
discrimination, necessitating explicit calibration methods in
Future extensions [14], [15].

Calibration Plot

LOf —e- LogReg (Brier 0.150)
o RE (Brer0.170) o

0.0 0.2 04 06 0.8 10
Predicted probability

Fig. 5 Calibration curves

5.4 Feature Importance

Random Forest’s feature importance analysis (Fig. 6)
emphasized features such as screen time, sleep hours,
negative sentiment, and social support as the most significant
predictors of stress. These findings are aligned prior literature
on digital mental health, which demonstrates a strong
correlation between elevated stress levels, nighttime use and
diminished sleep [2], [7], [20]. Furthermore, the linguistic
markers are reliable indicators of psychological distress is
also consistent with negative and toxicity in language
features. [3], [8], [15].
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o & & A
?o > &
2 &

e & P o > o &
F & TS S
R &+ F 5
K

015}
y
g
8
% 010}
8
£ 0.05}
[c]
0.00%
& ’
o &
S b3

&
&

L S

e’ &
Q7 S os €
& O

& T & e
& &P &7 & P

Fig. 6 Random Forest feature importance

5.5 Case Study of Predictions

Qualitative interpretability was illustrated through ten
example predictions from the BILSTM model (Fig. 7). They
were designated as stressed with a high likelihood (>0.85). In
contrast, neutral or positive posts showing social events or
informal updates were accurately classified as non-stressed.
Some unclear messages with diverse emotional tones were
misclassified, showing the difficulty of contextual complexity
[117, [12], [15]. In conclusion, Logistic Regression attained
the optimal equilibrium between discriminating and
probability calibration, but BILSTM demonstrated enhanced
efficacy in modelling linguistic complexity. These
complementary outcomes highlight the necessity of
comparing classical and deep learning models within a
unified and reproducible framework [4], [20], [21].

Fig. 7 Ten example predictions (best model).

6. DISCUSSION

The findings of this study demonstrate that both
behavioral and linguistic signals contribute valuable and
complementary information to the prediction of student
stress. Logistic Regression outperformed other models in
ROC-AUC and PR AUC metrics, while exhibiting optimal
calibration, as indicated by its lowest Brier score (0.150).
These findings confirm the recognised efficacy of linear
models with standardised variables in delivering dependable
probability estimates [10], [19]. Conversely, Random Forest
exhibited suboptimal calibration, however it provided
interpretable feature significance ratings consistent with
existing research on stress correlates [2], [ 7], [20].

Deep leaming models especially BiLSTM, displayed
efficacy in managing contextual subtleties in student-
generated text. As seen in Fig. 10, BiLSTM effectively
differentiated intricate emotional expressions and colloquial
stress signals, abilities that traditional learners generally lack
[11], [12]. Calibration curves revealed that deep leaming
models had a tendency towards overconfidence, aligning with
previous studies in NLP-based health prediction [15]. This
indicates that calibration methods, like temperature scaling or
isotonic regression must be integrated into future
implementations to guarantee dependable probability outputs
[17], [21].

The Random Forest significance plot identified
behavioural variables aligned with the theoretical framework
of stress resources [2]. This improves the practical
applicability of the baseline, enabling institutions to focus
interventions. However, the dependence on real-world
through self-reports, APIs, and social media material has
drawbacks including reporting bias, demographics
overrepresentation, and platform- distortion. Recent research
indicates that Al models for mental health can incorporate
demographic biases, resulting in disparate performance
among subgroups [17].

The study did not stratify results by gender,
socioeconomic background, or cultural factors, which limits
its fairness evaluation. Future research must incorporate
subgroup analysis, fairness-aware modeling, and privacy-
preserving analytics [15], [17], [18]. Furthermore, all data
management with GDPR and PDPA regulations to ensure
permission and anonymity [21].

The findings affirm the synergistic advantages of
classical and deep learning models, while revealing
constraints concerning calibration, fairness, and ecological
validity. By tackling these problems, next developments can
enhance the replicable baseline to promote multimodal,
ethical, and egalitarian stress prediction systems [4], [20].
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7. CONCLUSION AND FUTURE WORK

The study introduces a baseline for predicting student
stress from social media usage, integrating behavioral and
textual signals into classical machine leaming and deep
learning models. Results demonstrated that Logistic
Regression provided the most reliable probability calibration
and robust discriminative performance on tabular features,
while BiLSTM demonstrated superior capacity to interpret
context-dependent and stress-related expressions. Random
Forest offered interpretable feature importance, revealing
predictors consistent with stress theories such as nocturnal
usage, reduced sleep, and negative sentiment [2], [7], [20].

The reproducibility of the proposed baseline is its central
contribution as it consists of the growing demand for
transparency in Al research by detailing the end-to-end
pipeline, sharing open-source code, and utilizing standardised
evaluation metrics [21]. Furthermore, this work provides
practical implications for universities seeking systems that
identify at-risk students while respecting ethical standards
[17], [21].

To confirm external validity, the study should validate
with real-world, longitudinal datasets. Secondly, to gather
stress trajectories, multimodal fusion approaches that
integrate smartphone sensing and linguistic data should be
pursued [4], [7], [20]. Third, the incorporation of
Transformer-based architectures including BERT [13],
RoBERTa [14], and domain variants as MentalBERT [15]
can improve the language modelling for stress-related
discourse. To guarantee equitable deployment, this should
prioritise privacy analytics and fairness-aware machine
learning [17], [18].

In conclusion, this reproducible baseline functions as
both a practical foundation, making it possible to create stress
prediction systems that are ethically responsible and
multimodal. This study illustrates the feasibility of collecting
and analysing empirical behavioural and linguistic data while
adhering to stringent ethical and privacy procedures.
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