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Abstract

The growth of resource-constrained devices within
the Internet of Things (IoT) and Wireless Sensor
Networks (WSNs) necessitates the use of highly efficient
communication protocols. This study compares the
performance of the MQTT protocol and its lighter
version, MQTT-SN, on the popular ESP32 platform. The
goal is to see if they are good enough for real-world IoT
applications by testing important performance metrics
including latency, throughput, and packet loss with
different packet sizes and Quality of Service levels. An
experimental testbed was established using an ESP32
microcontroller as the client. It communicates with a host
PC running a Mosquitto broker and a Paho MQTT-SN
gateway. The experimental results support that MQTT-
SN offers significant performance advantages in terms of
speed and efficiency. It reliably shows lower average
latency and higher data throughput compared to standard
MQTT across most tested conditions. The findings
suggest that the option between MQTT and MQTT-SN
presents a clear engineering trade-off. MQTT-SN is the
more suitable option for applications prioritizing low
latency and high efficiency with small data packets. The
present resilience of standard MQTT makes it more
suitable for applications requiring guaranteed delivery of
larger data payloads.

Keywords: MQTT, MQTT-SN, Internet of Things,
Wireless Sensor Networks

1. Introduction

Wireless Sensor Networks (WSNs) are now a basic
technology for gathering data in places like industries,
farms, hospitals, and cities. A typical WSN has a lot of
small sensor nodes that are spread out over a wide area.
Each node can sense, process, and communicate. Because
these nodes often have very limited power and memory,
the choice of communication protocol is crucial. For these
small devices, standard internet protocols like HTTP and
FTP are often too demanding[1]. As a result, the field has
moved toward lighter options like CoAP, 6LoWPAN, and
Message Queuing Telemetry Transport (MQTT), which
are all designed to work within tight power, memory, and
processing limits[2].

MQTT is a popular option in the messaging protocol
space. The publish-subscribe model works well for many
Internets of Things applications, and this protocol is
lightweight. It is a good choice for data transmission
between devices and the cloud due to features like its ease
of use, low overhead, and support for various Quality of
Service (QoS) levels[3]. However, MQTT still has a
problem with TCP/IP networks. It needs a stable
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connection and good bandwidth. This reliance on
TCP/IP[3] is a major hurdle in constrained of WSNs,
where nodes often use UDP and have to deal with
unreliable connections, low bandwidth, and a high chance
of losing packets[2].

To solve the problems, MQTT-SN was created. It’s
an optimized version of MQTT that works well on non-
TCP/IP networks like Zigbee, Bluetooth Low Energy
(BLE), and 6LoWPAN, mostly by using UDP as its
transport layer. One of its main improvements is the
ability to pre-register a topic ID, which makes messages
much smaller. It also includes a “sleep mode” for clients,
saving a lot of power by letting devices disconnect and
reconnect as needed. These features make MQTT-SN a
better, more energy-efficient choice for battery-powered
sensors working in difficult wireless conditions[4].

This study implements a WSN using MQTT and
MQTT-SN to demonstrate real-world performance. We
considered ESP32 microcontrollers to implement the
MQTT and MQTT-SN protocols in our configuration.
The ESP32 is a widespread choice for IoT projects[5].
Since it has built-in Wi-Fi and Bluetooth. Then we
conducted performance tests, comparing MQTT-SN
directly to regular MQTT. The point is to evaluate the
performance of MQTT-SN by measuring latency,
throughput, and packet loss rate.

2. Literature Review

Advancements in digital electronics and wireless
communications have enabled the significant rise of the
field of WSNs. The setting up of a WSN is about the
deployment of multiple sensor nodes. Their devices are
tiny and low power. They can sense, compute, and
communicate. To ensure the durability and efficiency of a
WSN, it is important to take into account several major
parameters during the design process. These include
network topologies such as star, tree, or mesh. These
influences connectivity, communication paths, and
energy efficiency[6]. It may have a problem because the
sensor nodes often rely on batteries and are deployed in
remote or hardly to access areas. In addition, some factors
such as scalability, security, and QoS are important. It has
a function to maintain data reliability and timely delivery.
The design strategy must consider the specific application
context, whether terrestrial, underground, or mobile[7].

WSNs rely on a variety of protocols. Each operating
protocol is at a specific layer in the network stack. At the
data-link layer, WSNs are often dependent on MAC
protocols such as Carrier Sense Multiple Access (CSMA)
and Time Division Multiple Access (TDMA). It used to
coordinate which nodes transmit at any given time. This
control factors reduces the chance of collisions and reduce
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energy usage[8]. At the network layer, routing protocols
are used to determine. It helps data to travel from
individual sensor nodes to the base station. Reactive
protocols like Ad hoc On-Demand Distance Vector
(AODV) and Dynamic Source Routing (DSR) create
routes only when they are suitable for dynamic or
frequently changing network needed. This strategy makes
topologies[9]. In addition to these, several standard
protocol stacks have become common. It includes Zigbee,
which is based on the IEEE 802.15.4 standard. It is
widespread for low power consumption and mesh
networking capabilities system. 6LoWPAN is one of the
standard protocol tools. It enables IPv6 packets to be
carried over low-power wireless networks[ 10, 11].

The MQTT protocol has developed into a common
messaging protocol for the IoT. It has been widely
adopted in WSN applications. MQTT is a lightweight,
publish-subscribe protocol that operates on top of TCP/IP.
Its design is optimized for environments with high latency
and low bandwidth. MQTT can also handle many sensor
networks. The publish-subscribe model decouples
publishers to subscribers via a central broker. It also
allows for scalable and flexible one-to-many and many-
to-one communication patterns. This architecture
simplifies the communication logic for resource-
constrained sensor nodes [12].

In WSNs where traditional the TCP/IP stacks are
impractical. Some protocol such as Zigbee, Bluetooth,
and MQTT-SN offers a more suitable choice. MQTT-SN
is specifically designed to be a lightweight protocol for
machine-to-machine communication in environments
where holding a TCP/IP stack. It is unfeasible because of
limitations in memory, computing capacity, or power
availability[13]. It keeps the fundamental publish-
subscribe architecture from MQTT. But it modified to
function over connectionless protocols such as UDP. A
core architectural component of MQTT-SN is the
gateway. It connects the MQTT-SN clients in the sensor
network to the MQTT broker [1] that is either in the cloud
or on a local server. This gateway translates between
MQTT-SN to MQTT protocols. This allows sensor nodes
to reliably forward data into broader IoT ecosystems
through the MQTT-SN gateway.

MQTT-SN has several advantages compared to the
standard MQTT protocol. It is specifically designed for
battery-operated and resource-constrained wireless sensor
networks. The most significant benefit is the reduction in
packet size. Instead of using long, human-readable topic
names in every published message. MQTT-SN allows
clients to register a topic name with the gateway and
receive a shorter two-byte topic ID. Subsequent
communications utilize this topic ID, significantly
reducing the overhead. Consequently, the energy required
for transmission decreases[11]. Furthermore, MQTT-SN
is transport-agnostic and is commonly used over UDP. It
is more lightweight than the connection-oriented TCP
used by MQTT[3]. MQTT-SN includes features designed
for sleeping devices. It includes an offline keep-alive

mechanism, in which the gateway buffers messages for
sleeping clients until they reconnect. A further benefit is
the gateway finding technique. It enables clients to
dynamically discover a gateway inside the network
without previous configuration of its address. These
features collectively make MQTT-SN more efficient and
practical choice for many WSN deployments[13, 14].

3. System Design

This section speaks about how the system was set up
for the performance test. There are two different test
settings for the experimental work. One is for the regular
MQTT protocol, and the other is for the MQTT-SN
protocol. Each environment is meant to look at the unique
features of the protocols being compared.

3.1 MQTT Protocol

In this architecture, the client device communicates
directly with the broker. Its working principle is as
follows:

Host PC
ESP32 Mosquitto
] —> ——Data——>
(Publisher) Data & o MQTT Broker

Wi-Fi Router
Subscribe

Python Seript
|

Record Data
¥

Database

Fig. 1 MQTT Protocol model

This setup shows the direct communication line that
a client device uses to submit data through a central
broker. The ESP32, which acts as the client, starts the
process by making the data payload. Then it connects to
the local network through a Wi-Fi router, which is the
device that sends data over the LAN to its final
destination, the Host PC.

The Host PC is the main computer that handles all of
the system's processing. The MQTT Broker, which is the
main part of the system that handles all message flow,
runs on this machine. The ESP32 connects directly to this
broker over TCP/IP to publish its message. This reliance
on TCP/IP is particularly important because its confident
delivery method is what makes the system so reliable. The
subscriber runs on the same host computer. It subscribes
to the MQTT topic and establishes a connection with the
broker. Upon receiving a message, the broker promptly
forwards it to the script. The script checks the data, then
figures out the throughput and latency and saves the
results in MariaDB.
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3.2 MQTT-SN Protocol

This architecture is adapted for resource-constrained
devices, with the gateway as a key additional component.

Host PC

Paho MQTT-SN

Table 2: Controlled Variables
Parameter Specification / Value
ESP32-WROOM-32
Development Board

Mosquitto v2.0.22

Eclipse Paho MQTT-SN
Gateway v1.1

Client Device

MQTT Broker

MQTT-SN Gateway

(Pfl?f:s -12& 0 —Data—> u —Data—> Translate

Wi-Fi Router

Gateway " MQTT‘Bml:er

Subscribe

Python Script

Record Data

Y

Database

Fig. 2 MQTT-SN Protocol model

The proposed system contains ESP32 nodes, Router,
and computer to run python script and software. The main
change to this architecture is the addition of a gateway.
The ESP32 client cannot connect directly to the MQTT
broker. Instead, it sends MQTT-SN messages to the
Gateway. Then, the Gateway changes these MQTT-SN
messages into standard MQTT messages and sends them
over TCP to the MQTT Broker. The Broker views the
Gateway as just another MQTT client.

4. Methodology

The methodology for this research is experimental,
based on a quantitative performance comparison between
the MQTT and MQTT-SN protocols. The evaluation is
structured around three distinct tests, including latency,
throughput, and packet loss rate. It is all designed to
analyze the performance of the protocols under different
scenarios. The data gathered from these tests will form the
basis for our conclusions, allowing for a direct
comparison to determine the suitability of each protocol
for resource.

Table 1: Independent Variables
Specification / Value

MQTT, MQTT-SN

0,1,2

20, 60, 100, 140, 180, 220 bytes

Parameter
Protocol Tested
Quality of Service
Payload Size

Table 1 shows the variables that were adjusted in
each experiment. We run following a structured approach
to observe and measure their impact on protocol
performance such as latency, throughput, and packet loss.

Python v3.13.3 with Paho-
MQTT Library
MariaDB v11.8.2
500 messages
ESP32 synchronized time with

Data Collection Script

Database
Messages per Run

Time Synchronization

NTP server
o PubSubClient(MQTT);
Client Libraries WiFiUDP client (MQTT-SN)
Network 5 GHz Wi-Fi

Table 2 lists parameters and components that were
maintained constant throughout the experiment. This
ensures that the comparison between different conditions
is impartial and accurate. linking any observed changes in
results solely to the effects of the independent variables

4.1 Latency Measurement

We utilized timestamps to verify latency in this
experiment to ensure its accuracy. The initial action of the
ESP32 is to synchronize with an NTP server.[15]. The
payload contains the current time in milliseconds, the
Message ID, and the packet size for each transmission.
The Host PC, serving as the data receiver, communicates
the experimental results upon receiving this payload over
MQTT or MQTT-SN. The computer logs the timestamp
upon message receipt. To ascertain the transmission
latency, one must compare the arrival time with the
message timestamp. MariaDB retains the outcomes.
Numerous test sets for the experiment are predicated on
specific conditions. MQTT and MQTT-SN were
employed, utilizing QoS levels 0, 1, and 2 for MQTT,
with packet sizes varying from 20 to 220 bytes. The
experiment's packet size was limited to a maximum of 220
bytes because the configuration used a single-octet
Length field, which supports a total message length of up
to 255 bytes. Testing larger sizes would be outside the
specification of this length-encoding mechanism. In every
experiment, 500 messages are transmitted continuously to
ensure the statistical reliability of the data. The data was
subsequently utilized to calculate the mean, minimum,
maximum, and standard deviation of the delay. Graphs
facilitate the comparison of packet sizes and their
respective arrival times. It demonstrates the efficacy of
each regimen.

4.2 Throughput Measurement

This test evaluates the volume of data the ESP32
device can transmit to the PC gateway within a certain
timeframe. The PC does the measurements, alleviating the
ESP32 of this task due to its limited resources. The
computer's Python program subscribes to the ESP32's
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data topic. The script enumerates the number of messages
successfully received throughout each testing interval. It
monitors all messages, from the initial to the final. The
mean data transfer rate in messages per second is derived
from this data. It demonstrates the system's operational
speed across several scenarios. The protocol
(MQTT/MQTT-SN), the QoS levels (0, 1, 2), and the
payload size (20-220 bytes) exemplify certain scenarios.
MariaDB retains the outcomes. Subsequently, analyze
throughput in relation to packet size or Quality of Service
(QoS) level and construct a graph to evaluate the efficacy
of each protocol.

4.3 Packet Loss Measurement

We used sequential message identifiers to assess
protocol transmission reliability. Each experiment had the
ESP32 client send 500 messages. Each message's payload
had a unique, incrementing message ID (1-500). It gave
the receiver a predictable sequence. The host PC Python
subscriber script collected and logged all incoming
messages and message IDs. Breaks in the received
number sequence were used to quantify packet loss. The
packet loss rate was calculated by comparing the total
number of messages received to the 500 delivered
messages[16]:

(TTM — TRM)

TT™

PLR is a packet loss rate, TTM is a total transmitted
message, and TRM is the total received messages. This
measurement was systematically performed for every
combination of protocol MQTT, MQTT-SN, Quality of
Service (QoS) level, and payload size. These results are
allowing for a direct and accurate comparison of their
reliability under varying operational conditions

5. Result

PLR = X100% (1)

Using graphs, this section compares the
performance of MQTT and MQTT-SN protocols
experimentally.

—e— MQTT-QoS0
MQTT-QoS1
—— MQTT-QoS2  ==--

-+~ MQTT-SN-QoS0
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MQTT-SN-QoS2
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Fig.3 Latency vs. Packet Size of MQTT and MQTT-SN

5.1 Latency

Fig.3 indicates that the average latency of almost all
MQTT-SN protocols is lower than the average latency of
the standard MQTT protocol at low packet size, because
MQTT-SN is lightweight and wuses UDP for
communication, which is faster than MQTT's use of TCP.

250

—e— MQTT-QoS0
MQTT-QoS1
—— MQTT-QoS2
-4-- MQTT-SN-QoS0
-+ MQTT-SN-QoS1
- MQTT-SN-QoS2

200 A

150

100

Throughput (bytes/sec)

50 A

25 S0 75 100 125 150 175 200 225
Packet Size (bytes)
Fig.4 Throughput vs Packet Size of MQTT and MQTT-SN

5.2 Throughput

Fig. 4 shows that the throughput for both MQTT and
MQTT-SN keeps going up as the packet size becomes
bigger. In the first range with smaller packets, MQTT-SN
always has a higher throughput than MQTT, which means
it is better for sending small amounts of data at all QoS
levels. This is because MQTT-SN is a lightweight
protocol that uses a short topic ID instead of a long topic
name, which uses less data, and it typically runs over the
faster UDP protocol.

5.3 Packet Loss

The results show that for packet sizes ranging from
20 to 220 bytes, there was zero packet loss across all QoS
levels for both protocols.

6. Conclusions

This study presented a performance comparison of
the MQTT and MQTT-SN protocols on the resource
constrained ESP32 platform. The purpose was to assess
their applicability to IoT applications by measuring key
performance metrics.

The experimental findings showed that MQTT-SN
had big performance benefits in terms of speed and
efficiency. For tiny to medium-sized packets, it always
had reduced average latency and higher data throughput.
The lightweight UDP transport protocol and topic ID
registration technique used by MQTT-SN to cut down on
packet overhead were both tested and found to work as
planned. MQTT-SN is the best solution for apps that need
to be fast and use as little bandwidth as possible.
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In the end, the decision between MQTT and MQTT-
SN comes down to a trade-off between speed and
dependability. The conventional MQTT protocol via TCP
is the better solution for any application where guaranteed
delivery of large payloads is important. MQTT-SN works
well in low-power, resource-constrained applications
where low latency for small data packets is important.
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