
การประชุมวิชาการทางวิศวกรรมไฟฟ้า คร้ังท่ี 48  
The 48th Electrical Engineering Conference (EECON-48)  
วนัท่ี 19-21 พฤศจิกายน 2568 ณ โรงแรมฟูราม่า จงัหวดัเชียงใหม่  

*Corresponding Author 

 

Comparative Analysis of MQTT and MQTT-SN Protocols in Wireless Sensor Network 

Juthathip Wannawan1, Weeraphon Yana2, Buntueng Yana3 * 

1Department of Electrical Engineering, School of Engineering, University of Phayao, Thailand, 

juthathipwannawan@gmail.com1, weeraphonyana@gmail.com2, mr.buntueng@gmail.com3* 

 

Abstract 
The growth of resource-constrained devices within 

the Internet of Things (IoT) and Wireless Sensor 

Networks (WSNs) necessitates the use of highly efficient 

communication protocols. This study compares the 

performance of the MQTT protocol and its lighter 

version, MQTT-SN, on the popular ESP32 platform. The 

goal is to see if they are good enough for real-world IoT 

applications by testing important performance metrics 

including latency, throughput, and packet loss with 

different packet sizes and Quality of Service levels. An 

experimental testbed was established using an ESP32 

microcontroller as the client. It communicates with a host 

PC running a Mosquitto broker and a Paho MQTT-SN 

gateway. The experimental results support that MQTT-

SN offers significant performance advantages in terms of 

speed and efficiency. It reliably shows lower average 

latency and higher data throughput compared to standard 

MQTT across most tested conditions. The findings 

suggest that the option between MQTT and MQTT-SN 

presents a clear engineering trade-off. MQTT-SN is the 

more suitable option for applications prioritizing low 

latency and high efficiency with small data packets.  The 

present resilience of standard MQTT makes it more 

suitable for applications requiring guaranteed delivery of 

larger data payloads. 

Keywords: MQTT, MQTT-SN, Internet of Things, 

Wireless Sensor Networks 

1. Introduction 

Wireless Sensor Networks (WSNs) are now a basic 

technology for gathering data in places like industries, 

farms, hospitals, and cities. A typical WSN has a lot of 

small sensor nodes that are spread out over a wide area. 

Each node can sense, process, and communicate. Because 

these nodes often have very limited power and memory, 

the choice of communication protocol is crucial. For these 

small devices, standard internet protocols like HTTP and 

FTP are often too demanding[1]. As a result, the field has 

moved toward lighter options like CoAP, 6LoWPAN, and 

Message Queuing Telemetry Transport (MQTT), which 

are all designed to work within tight power, memory, and 

processing limits[2]. 

MQTT is a popular option in the messaging protocol 

space. The publish-subscribe model works well for many 

Internets of Things applications, and this protocol is 

lightweight. It is a good choice for data transmission 

between devices and the cloud due to features like its ease 

of use, low overhead, and support for various Quality of 

Service (QoS) levels[3]. However, MQTT still has a 

problem with TCP/IP networks. It needs a stable 

connection and good bandwidth. This reliance on 

TCP/IP[3] is a major hurdle in constrained of WSNs, 

where nodes often use UDP and have to deal with 

unreliable connections, low bandwidth, and a high chance 

of losing packets[2]. 

To solve the problems, MQTT-SN was created. It’s 

an optimized version of MQTT that works well on non-

TCP/IP networks like Zigbee, Bluetooth Low Energy 

(BLE), and 6LoWPAN, mostly by using UDP as its 

transport layer. One of its main improvements is the 

ability to pre-register a topic ID, which makes messages 

much smaller. It also includes a “sleep mode” for clients, 

saving a lot of power by letting devices disconnect and 

reconnect as needed. These features make MQTT-SN a 

better, more energy-efficient choice for battery-powered 

sensors working in difficult wireless conditions[4]. 

This study implements a WSN using MQTT and 

MQTT-SN to demonstrate real-world performance. We 

considered ESP32 microcontrollers to implement the 

MQTT and MQTT-SN protocols in our configuration. 

The ESP32 is a widespread choice for IoT projects[5]. 

Since it has built-in Wi-Fi and Bluetooth. Then we 

conducted performance tests, comparing MQTT-SN 

directly to regular MQTT. The point is to evaluate the 

performance of MQTT-SN by measuring latency, 

throughput, and packet loss rate. 

2. Literature Review 

Advancements in digital electronics and wireless 

communications have enabled the significant rise of the 

field of WSNs. The setting up of a WSN is about the 

deployment of multiple sensor nodes. Their devices are 

tiny and low power. They can sense, compute, and 

communicate. To ensure the durability and efficiency of a 

WSN, it is important to take into account several major 

parameters during the design process. These include 

network topologies such as star, tree, or mesh. These 

influences connectivity, communication paths, and 

energy efficiency[6]. It may have a problem because the 

sensor nodes often rely on batteries and are deployed in 

remote or hardly to access areas. In addition, some factors 

such as scalability, security, and QoS are important. It has 

a function to maintain data reliability and timely delivery. 

The design strategy must consider the specific application 

context, whether terrestrial, underground, or mobile[7]. 

WSNs rely on a variety of protocols. Each operating 

protocol is at a specific layer in the network stack. At the 

data-link layer, WSNs are often dependent on MAC 

protocols such as Carrier Sense Multiple Access (CSMA) 

and Time Division Multiple Access (TDMA). It used to 

coordinate which nodes transmit at any given time. This 

control factors reduces the chance of collisions and reduce 
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energy usage[8]. At the network layer, routing protocols 

are used to determine. It helps data to travel from 

individual sensor nodes to the base station. Reactive 

protocols like Ad hoc On-Demand Distance Vector 

(AODV) and Dynamic Source Routing (DSR) create 

routes only when they are suitable for dynamic or 

frequently changing network needed. This strategy makes 

topologies[9]. In addition to these, several standard 

protocol stacks have become common. It includes Zigbee, 

which is based on the IEEE 802.15.4 standard. It is 

widespread for low power consumption and mesh 

networking capabilities system. 6LoWPAN is one of the 

standard protocol tools. It enables IPv6 packets to be 

carried over low-power wireless networks[10, 11]. 

The MQTT protocol has developed into a common 

messaging protocol for the IoT. It has been widely 

adopted in WSN applications. MQTT is a lightweight, 

publish-subscribe protocol that operates on top of TCP/IP. 

Its design is optimized for environments with high latency 

and low bandwidth. MQTT can also handle many sensor 

networks. The publish-subscribe model decouples 

publishers to subscribers via a central broker. It also 

allows for scalable and flexible one-to-many and many-

to-one communication patterns. This architecture 

simplifies the communication logic for resource-

constrained sensor nodes [12]. 

In WSNs where traditional the TCP/IP stacks are 

impractical. Some protocol such as Zigbee, Bluetooth, 

and MQTT-SN offers a more suitable choice. MQTT-SN 

is specifically designed to be a lightweight protocol for 

machine-to-machine communication in environments 

where holding a TCP/IP stack. It is unfeasible because of 

limitations in memory, computing capacity, or power 

availability[13]. It keeps the fundamental publish-

subscribe architecture from MQTT.  But it modified to 

function over connectionless protocols such as UDP. A 

core architectural component of MQTT-SN is the 

gateway. It connects the MQTT-SN clients in the sensor 

network to the MQTT broker [1] that is either in the cloud 

or on a local server. This gateway translates between 

MQTT-SN to MQTT protocols. This allows sensor nodes 

to reliably forward data into broader IoT ecosystems 

through the MQTT-SN gateway. 

MQTT-SN has several advantages compared to the 

standard MQTT protocol. It is specifically designed for 

battery-operated and resource-constrained wireless sensor 

networks. The most significant benefit is the reduction in 

packet size.  Instead of using long, human-readable topic 

names in every published message. MQTT-SN allows 

clients to register a topic name with the gateway and 

receive a shorter two-byte topic ID. Subsequent 

communications utilize this topic ID, significantly 

reducing the overhead. Consequently, the energy required 

for transmission decreases[11]. Furthermore, MQTT-SN 

is transport-agnostic and is commonly used over UDP. It 

is more lightweight than the connection-oriented TCP 

used by MQTT[3]. MQTT-SN includes features designed 

for sleeping devices. It includes an offline keep-alive 

mechanism, in which the gateway buffers messages for 

sleeping clients until they reconnect. A further benefit is 

the gateway finding technique. It enables clients to 

dynamically discover a gateway inside the network 

without previous configuration of its address. These 

features collectively make MQTT-SN more efficient and 

practical choice for many WSN deployments[13, 14]. 

3. System Design 

This section speaks about how the system was set up 

for the performance test. There are two different test 

settings for the experimental work. One is for the regular 

MQTT protocol, and the other is for the MQTT-SN 

protocol. Each environment is meant to look at the unique 

features of the protocols being compared. 

3.1 MQTT Protocol 

In this architecture, the client device communicates 

directly with the broker. Its working principle is as 

follows:  

Fig. 1 MQTT Protocol model 

This setup shows the direct communication line that 

a client device uses to submit data through a central 

broker. The ESP32, which acts as the client, starts the 

process by making the data payload. Then it connects to 

the local network through a Wi-Fi router, which is the 

device that sends data over the LAN to its final 

destination, the Host PC. 

The Host PC is the main computer that handles all of 

the system's processing. The MQTT Broker, which is the 

main part of the system that handles all message flow, 

runs on this machine. The ESP32 connects directly to this 

broker over TCP/IP to publish its message. This reliance 

on TCP/IP is particularly important because its confident 

delivery method is what makes the system so reliable. The 

subscriber runs on the same host computer. It subscribes 

to the MQTT topic and establishes a connection with the 

broker. Upon receiving a message, the broker promptly 

forwards it to the script. The script checks the data, then 

figures out the throughput and latency and saves the 

results in MariaDB. 
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3.2 MQTT-SN Protocol 

This architecture is adapted for resource-constrained 

devices, with the gateway as a key additional component.

 

Fig. 2 MQTT-SN Protocol model 

The proposed system contains ESP32 nodes, Router, 

and computer to run python script and software. The main 

change to this architecture is the addition of a gateway. 

The ESP32 client cannot connect directly to the MQTT 

broker. Instead, it sends MQTT-SN messages to the 

Gateway. Then, the Gateway changes these MQTT-SN 

messages into standard MQTT messages and sends them 

over TCP to the MQTT Broker. The Broker views the 

Gateway as just another MQTT client. 

4. Methodology 

The methodology for this research is experimental, 

based on a quantitative performance comparison between 

the MQTT and MQTT-SN protocols. The evaluation is 

structured around three distinct tests, including latency, 

throughput, and packet loss rate. It is all designed to 

analyze the performance of the protocols under different 

scenarios. The data gathered from these tests will form the 

basis for our conclusions, allowing for a direct 

comparison to determine the suitability of each protocol 

for resource. 

Table 1: Independent Variables 

Parameter Specification / Value 

Protocol Tested MQTT, MQTT-SN 

Quality of Service  0, 1, 2 

Payload Size 20, 60, 100, 140, 180, 220 bytes 

Table 1 shows the variables that were adjusted in 

each experiment. We run following a structured approach 

to observe and measure their impact on protocol 

performance such as latency, throughput, and packet loss. 

Table 2: Controlled Variables 
Parameter Specification / Value 

Client Device 
ESP32-WROOM-32 

Development Board 

MQTT Broker Mosquitto v2.0.22 

MQTT-SN Gateway 
Eclipse Paho MQTT-SN 

Gateway v1.1 

Data Collection Script 
Python v3.13.3 with Paho-

MQTT Library 

Database MariaDB v11.8.2 

Messages per Run 500 messages 

Time Synchronization 
ESP32 synchronized time with 

NTP server 

Client Libraries 
PubSubClient(MQTT); 

WiFiUDP client (MQTT-SN) 

Network 5 GHz Wi-Fi  

Table 2 lists parameters and components that were 

maintained constant throughout the experiment. This 

ensures that the comparison between different conditions 

is impartial and accurate. linking any observed changes in 

results solely to the effects of the independent variables 

4.1 Latency Measurement 

We utilized timestamps to verify latency in this 

experiment to ensure its accuracy. The initial action of the 

ESP32 is to synchronize with an NTP server.[15]. The 

payload contains the current time in milliseconds, the 

Message ID, and the packet size for each transmission. 

The Host PC, serving as the data receiver, communicates 

the experimental results upon receiving this payload over 

MQTT or MQTT-SN. The computer logs the timestamp 

upon message receipt. To ascertain the transmission 

latency, one must compare the arrival time with the 

message timestamp. MariaDB retains the outcomes. 

Numerous test sets for the experiment are predicated on 

specific conditions. MQTT and MQTT-SN were 

employed, utilizing QoS levels 0, 1, and 2 for MQTT, 

with packet sizes varying from 20 to 220 bytes. The 

experiment's packet size was limited to a maximum of 220 

bytes because the configuration used a single-octet 

Length field, which supports a total message length of up 

to 255 bytes. Testing larger sizes would be outside the 

specification of this length-encoding mechanism. In every 

experiment, 500 messages are transmitted continuously to 

ensure the statistical reliability of the data. The data was 

subsequently utilized to calculate the mean, minimum, 

maximum, and standard deviation of the delay. Graphs 

facilitate the comparison of packet sizes and their 

respective arrival times. It demonstrates the efficacy of 

each regimen. 

4.2 Throughput Measurement 

This test evaluates the volume of data the ESP32 

device can transmit to the PC gateway within a certain 

timeframe. The PC does the measurements, alleviating the 

ESP32 of this task due to its limited resources. The 

computer's Python program subscribes to the ESP32's 
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data topic. The script enumerates the number of messages 

successfully received throughout each testing interval. It 

monitors all messages, from the initial to the final. The 

mean data transfer rate in messages per second is derived 

from this data. It demonstrates the system's operational 

speed across several scenarios. The protocol 

(MQTT/MQTT-SN), the QoS levels (0, 1, 2), and the 

payload size (20–220 bytes) exemplify certain scenarios. 

MariaDB retains the outcomes. Subsequently, analyze 

throughput in relation to packet size or Quality of Service 

(QoS) level and construct a graph to evaluate the efficacy 

of each protocol. 

4.3 Packet Loss Measurement 

We used sequential message identifiers to assess 

protocol transmission reliability. Each experiment had the 

ESP32 client send 500 messages. Each message's payload 

had a unique, incrementing message ID (1–500). It gave 

the receiver a predictable sequence. The host PC Python 

subscriber script collected and logged all incoming 

messages and message IDs. Breaks in the received 

number sequence were used to quantify packet loss. The 

packet loss rate was calculated by comparing the total 

number of messages received to the 500 delivered 

messages[16]: 

                  𝑃𝐿𝑅 =
(𝑇𝑇𝑀 − 𝑇𝑅𝑀)

𝑇𝑇𝑀
𝑋100%           (1) 

PLR is a packet loss rate, TTM is a total transmitted 

message, and TRM is the total received messages. This 

measurement was systematically performed for every 

combination of protocol MQTT, MQTT-SN, Quality of 

Service (QoS) level, and payload size. These results are 

allowing for a direct and accurate comparison of their 

reliability under varying operational conditions 

5. Result 

Using graphs, this section compares the 

performance of MQTT and MQTT-SN protocols 

experimentally. 

 
Fig.3 Latency vs. Packet Size of MQTT and MQTT-SN 

5.1 Latency  

Fig.3 indicates that the average latency of almost all 

MQTT-SN protocols is lower than the average latency of 

the standard MQTT protocol at low packet size, because 

MQTT-SN is lightweight and uses UDP for 

communication, which is faster than MQTT's use of TCP. 

 
Fig.4 Throughput vs Packet Size of MQTT and MQTT-SN 

 

5.2 Throughput  

Fig. 4 shows that the throughput for both MQTT and 

MQTT-SN keeps going up as the packet size becomes 

bigger. In the first range with smaller packets, MQTT-SN 

always has a higher throughput than MQTT, which means 

it is better for sending small amounts of data at all QoS 

levels. This is because MQTT-SN is a lightweight 

protocol that uses a short topic ID instead of a long topic 

name, which uses less data, and it typically runs over the  

faster UDP protocol. 

5.3 Packet Loss  

The results show that for packet sizes ranging from 

20 to 220 bytes, there was zero packet loss across all QoS 

levels for both protocols. 

6. Conclusions 

This study presented a performance comparison of 

the MQTT and MQTT-SN protocols on the resource 

constrained ESP32 platform. The purpose was to assess  

their applicability to IoT applications by measuring key  

performance metrics.   

The experimental findings showed that MQTT-SN 

had big performance benefits in terms of speed and  

efficiency. For tiny to medium-sized packets, it always  

had reduced average latency and higher data throughput.  

The lightweight UDP transport protocol and topic ID  

registration technique used by MQTT-SN to cut down on  

packet overhead were both tested and found to work as  

planned. MQTT-SN is the best solution for apps that need  

to be fast and use as little bandwidth as possible.  
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In the end, the decision between MQTT and MQTT-

SN comes down to a trade-off between speed and  

dependability. The conventional MQTT protocol via TCP  

is the better solution for any application where guaranteed  

delivery of large payloads is important. MQTT-SN works  

well in low-power, resource-constrained applications  

where low latency for small data packets is important. 
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